1
|
Ševčík V, Andraščíková M, Vavrouš A, Moulisová A, Vrbík K, Bendová H, Jírová D, Kejlová K, Hložek T. Market surveillance: analysis of perfuming products for presence of allergens and prohibited substances. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Immunological Analytical Techniques for Cosmetics Quality Control and Process Monitoring. Processes (Basel) 2021. [DOI: 10.3390/pr9111982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cosmetics analysis represents a rapidly expanding field of analytical chemistry as new cosmetic formulations are increasingly in demand on the market and the ingredients required for their production are constantly evolving. Each country applies strict legislation regarding substances in the final product that must be prohibited or regulated. To verify the compliance of cosmetics with current regulations, official analytical methods are available to reveal and quantitatively determine the analytes of interest. However, since ingredients, and the lists of regulated/prohibited substances, rapidly change, dedicated analytical methods must be developed ad hoc to fulfill the new requirements. Research focuses on finding innovative techniques that allow a rapid, inexpensive, and sensitive detection of the target analytes in cosmetics. Among the different methods proposed, immunological techniques are gaining interest, as they make it possible to carry out low-cost analyses on raw materials and finished products in a relatively short time. Indeed, immunoassays are based on the specific and selective antibody/antigen reaction, and they have been extensively applied for clinical diagnostic, alimentary quality control and environmental security purposes, and even for routine analysis. Since the complexity and variability of the matrices, as well as the great variety of compounds present in cosmetics, are analogous with those from food sources, immunological methods could also be applied successfully in this field. Indeed, this would provide a valid approach for the monitoring of industrial production chains even in developing countries, which are currently the greatest producers of cosmetics and the major exporters of raw materials. This review aims to highlight the immunological techniques proposed for cosmetics analysis, focusing on the detection of prohibited/regulated compounds, bacteria and toxins, and allergenic substances, and the identification of counterfeits.
Collapse
|
3
|
Riboni N, Fornari F, Bianchi F, Careri M. A simple and efficient Solid-Phase Microextraction - Gas Chromatography - Mass Spectrometry method for the determination of fragrance materials at ultra-trace levels in water samples using multi-walled carbon nanotubes as innovative coating. Talanta 2021; 224:121891. [PMID: 33379099 DOI: 10.1016/j.talanta.2020.121891] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
The occurrence of emerging contaminants is becoming of increasing importance to assess the impact of anthropogenic activities onto the environment. The present study reports for the first time the development and validation of an efficient method for the simultaneous determination of fragrance materials in water samples based on the use of a novel multiwalled carbon nanotubes (MWCNTs)-based solid-phase microextraction coating. Helical MWCNTs were selected as adsorbent material due to their outstanding extraction performance. The multicriteria method of desirability functions allowed the optimization of the experimental conditions in terms of extraction time and extraction temperature. Validation proved the reliability of the method for the determination of the analytes at ultra-trace levels, obtaining detection limits in the 0.2-13 ng/L range, good precision, with relative standard deviations lower than 20% and recovery rates in the 80 ± 12%-111 ± 11%. Superior enrichment factors compared to commercial fibers were also calculated. Finally, applicability to real sample analysis was demonstrated.
Collapse
Affiliation(s)
- N Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Center for Energy and Environment (CIDEA), University of Parma, Parco Area Delle Scienze 42, 43124, Parma, Italy.
| | - F Fornari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - F Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Center for Energy and Environment (CIDEA), University of Parma, Parco Area Delle Scienze 42, 43124, Parma, Italy.
| | - M Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Center for Energy and Environment (CIDEA), University of Parma, Parco Area Delle Scienze 42, 43124, Parma, Italy
| |
Collapse
|
4
|
Fardin‐Kia AR, Zhou W. Development and validation of a gas chromatography–mass spectrometry method for determination of 30 fragrance substances in cosmetic products. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Reza Fardin‐Kia
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition Office of Regulatory Science College Park Maryland USA
| | - Wanlong Zhou
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition Office of Regulatory Science College Park Maryland USA
| |
Collapse
|
5
|
Tuzimski T, Petruczynik A. Review of New Trends in the Analysis of Allergenic Residues in Foods and Cosmetic Products. J AOAC Int 2020; 103:997-1028. [PMID: 33241349 PMCID: PMC8370415 DOI: 10.1093/jaoacint/qsaa015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allergies represent an important health problem in industrialized countries. Allergen sensitization is an important risk factor for the development of allergic diseases; thus, the identification of an individual's allergen sensitization is essential for the diagnosis and treatment of diseases. OBJECTIVE This review compares different modern methods applied for the analysis of allergens in various matrices (from 2015 to the end of September 2019). CONCLUSIONS Immunological methods are still most frequently used for detection of allergens. These methods are sensitive, but the lack of specificity and cross-reaction of some antibodies can still be a relevant source of errors. DNA-based methods are fast and reliable for determination of protein allergens, but the epitopes of protein allergens with posttranslational modifications and their changes, originated during various processing, cannot be identified through the use of this method. Methods based on application of biosensors are very rapid and easy to use, and can be readily implemented as screening methods to monitor allergens. Recent developments of new high-resolution MS instruments are encouraging and enable development in the analysis of allergens. Fast, very sensitive, reliable, and accurate detection and quantification of allergens in complex samples can be used in the near future. Mass spectrometry coupled with LC, GC, or electrophoretic methods bring additional advances in allergen analysis. The use of LC-MS or LC-MS/MS for the quantitative detection of allergens in various matrices is at present gaining acceptance as a protein-based confirmatory technique over the routinely performed enzyme-linked immunosorbent assays.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Medical University of Lublin, Department of Physical Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| | - Anna Petruczynik
- Medical University of Lublin, Department of Inorganic Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| |
Collapse
|
6
|
Analytical chemistry assisted by multi-way calibration: A contribution to green chemistry. Talanta 2019; 204:700-712. [DOI: 10.1016/j.talanta.2019.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022]
|
7
|
Anzardi MB, Arancibia JA, Olivieri AC. Interpretation of matrix chromatographic-spectral data modeling with parallel factor analysis 2 and multivariate curve resolution. J Chromatogr A 2019; 1604:460502. [DOI: 10.1016/j.chroma.2019.460502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
|
8
|
Gu S, Li L, Huang H, Wang B, Zhang T. Antitumor, Antiviral, and Anti-Inflammatory Efficacy of Essential Oils from Atractylodes macrocephala Koidz. Produced with Different Processing Methods. Molecules 2019; 24:molecules24162956. [PMID: 31443182 PMCID: PMC6719198 DOI: 10.3390/molecules24162956] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Atractylodes macrocephala Koidz. has been used as an invigorating spleen drug for eliminating dampness and phlegm in China. According to recent researches, different processing methods may affect the drug efficacy, so we collected A. macrocephala from the Zhejiang Province, produced with different processing methods, crude A. macrocephala (CA) and bran-processed A. macrocephala (BA), then analyzed its essential oils (EOs) by GC/MS. The results showed 34 components representing 98.44% of the total EOs of CA were identified, and 46 components representing 98.02% of the total EOs of BA were identified. Atractylone is the main component in A. macrocephala. Compared with CA, BA has 46 detected compounds, 28 of which were identical, and 6 undetected compounds. Pharmacodynamic results revealed that the EOs of CA and atractylone exhibited more effective anticancer activity in HepG2, MCG803, and HCT-116 cells than the EOs of BA; while the EOs of BA exhibited simple antiviral effect on viruses H3N2, both the EOs and atractylone show anti-inflammatory activity by inhibiting the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in ANA-1 cells.
Collapse
Affiliation(s)
- Sihao Gu
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China
| | - Ling Li
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China
| | - Hai Huang
- Experimental Teaching Center of Pharmaceutical Sciences, School of Pharmacy, Fudan University, 826 Zhang-heng Rd, Shanghai 201203, China
| | - Bing Wang
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China.
| |
Collapse
|
9
|
Fujita M, Yamamoto Y, Wanibuchi S, Katsuoka Y, Kasahara T. The underlying factors that explain why nucleophilic reagents rarely co-elute with test chemicals in the ADRA. J Pharmacol Toxicol Methods 2019; 96:95-105. [PMID: 30776483 DOI: 10.1016/j.vascn.2019.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
The Amino acid Derivative Reactivity Assay (ADRA) is an in chemico alternative to animal testing for skin sensitization potential that uses two different nucleophilic reagents and it is known that ADRA hardly exhibts co-elution compared with the Direct Peptide Reactivity Assay (DPRA) based on the same scientific principles. In this study, we have analyzed the factors underlying why co-elution, which is sometimes an issue during DPRA testing, virtually never occurs during ADRA testing. Chloramine T and dimethyl isophthalate both exhibited co-elution during DPRA testing, but when quantified at both DPRA's 220 nm and ADRA's 281 nm, we found that when the later detection wavelength was used, these test chemicals produced extremely small peaks that did not interfere with quantification of the peptides. And although both salicylic acid and penicillin G exhibited co-elution during DPRA testing, when tested at a concentration just 1% of that used in DPRA, the very broad peak produced at the higher concentration was reduced significantly. However, both these test chemicals exhibited very sharp peaks when the pH of the injection sample was adjusted to be acidic. Based on these results, we were able to clarify that the reasons why nucleophlic reagents hardly co-elute with test chemicals during ADRA testing are depend on the following three major reasons: (1)differences in the detection wavelength, (2)differences in test chemical concentrations in the injection sample, (3)differences in composition of the injection solvent.
Collapse
Affiliation(s)
- Masaharu Fujita
- Safety Evaluation Centre, Ecology & Quality Management Division, CSR Division, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara-shi, Kanagawa, Japan.
| | - Yusuke Yamamoto
- Safety Evaluation Centre, Ecology & Quality Management Division, CSR Division, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara-shi, Kanagawa, Japan
| | - Sayaka Wanibuchi
- Safety Evaluation Centre, Ecology & Quality Management Division, CSR Division, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara-shi, Kanagawa, Japan
| | - Yasuhiro Katsuoka
- Safety Evaluation Centre, Ecology & Quality Management Division, CSR Division, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara-shi, Kanagawa, Japan
| | - Toshihiko Kasahara
- Safety Evaluation Centre, Ecology & Quality Management Division, CSR Division, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara-shi, Kanagawa, Japan
| |
Collapse
|