1
|
Pellegrino Vidal RB, Castañeda FN, Garrido ME, Padró JM. Aqueous size exclusion chromatography applied to polymer analysis: experimental conditions and molecular weight calibration curves. J Chromatogr A 2024; 1729:465042. [PMID: 38852271 DOI: 10.1016/j.chroma.2024.465042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Aqueous mode size exclusion chromatography (SEC) was employed for the analysis and construction of molecular weight (MW) calibration curves of three water-soluble polymers, namely, polyethylene glycol, polyethylene oxide, and polyacrylic acid sodium salt. Several calibration curves were obtained, varying chromatographic conditions such as columns arrangement, ionic strength, temperature and pH, in addition trends in polymeric chromatographic behavior were examined. The variation in SEC distribution coefficients at different temperatures was found to be below 10 %, indicating that the studied polymers follow an ideal SEC mechanism under the tested conditions. Thus, differences in chromatographic behavior were ascribed to changes in polymer configuration induced by media and/or temperature. These variations in morphology were consistent with the observed SEC behavior. Regarding MW calibration, polynomial regression models ranging from first to fifth order were applied, and the most adequate ones were selected based on their fit and prediction capabilities. Third order polynomials were the preferred models for polyethylene glycol and polyacrylic acid sodium salt, independently of chromatographic conditions. Meanwhile for polyethylene oxide, either third or fifth-order polynomial models were optimal depending on the chromatographic conditions. All the selected regression models presented coefficients of multiple determination (R2) above 0.990, while achieving relative errors of prediction (REP%) in MW ranging from 0.3 to 4 % for cross-validation.
Collapse
Affiliation(s)
- Rocío B Pellegrino Vidal
- Laboratorio de Investigación y Desarrollo en Métodos Analíticos (LIDMA)-CIC-PBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 49 y 115 (B1900AJL), La Plata, Argentina; División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (UNLP), 47 y 115 (B1900AJL), Ciudad de La Plata, Provincia de Buenos Aires, Argentina.
| | - Federico N Castañeda
- Laboratorio de Investigación y Desarrollo en Métodos Analíticos (LIDMA)-CIC-PBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 49 y 115 (B1900AJL), La Plata, Argentina; División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (UNLP), 47 y 115 (B1900AJL), Ciudad de La Plata, Provincia de Buenos Aires, Argentina
| | - Mariano E Garrido
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Juan M Padró
- División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (UNLP), 47 y 115 (B1900AJL), Ciudad de La Plata, Provincia de Buenos Aires, Argentina; YPF Tecnología S.A., Av. Del Petróleo s/n entre 129 y 143 (B1923), Berisso, Argentina.
| |
Collapse
|
2
|
Niezen LE, Kruijswijk JD, van Henten GB, Pirok BWJ, Staal BBP, Radke W, Philipsen HJA, Somsen GW, Schoenmakers PJ. Principles and potential of solvent gradient size-exclusion chromatography for polymer analysis. Anal Chim Acta 2023; 1253:341041. [PMID: 36965990 DOI: 10.1016/j.aca.2023.341041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The properties of a polymeric material are influenced by its underlying molecular distributions, including the molecular-weight (MWD), chemical-composition (CCD), and/or block-length (BLD) distributions. Gradient-elution liquid chromatography (LC) is commonly used to determine the CCD. Due to the limited solubility of polymers, samples are often dissolved in strong solvents. Upon injection of the sample, such solvents may lead to broadened or poorly shaped peaks and, in unfavourable cases, to "breakthrough" phenomena, where a part of the sample travels through the column unretained. To remedy this, a technique called size-exclusion-chromatography gradients or gradient size-exclusion chromatography (gSEC) was developed in 2011. In this work, we aim to further explore the potential of gSEC for the analysis of the CCD, also in comparison with conventional gradient-elution reversed-phase LC, which in this work corresponded to gradient-elution reversed-phase liquid chromatography (RPLC). The influence of the mobile-phase composition, the pore size of the stationary-phase particles, and the column temperature were investigated. The separation of five styrene/ethyl acrylate copolymers was studied with one-dimensional RPLC and gSEC. RPLC was shown to lead to a more-accurate CCD in shorter analysis time. The separation of five styrene/methyl methacrylate copolymers was also explored using comprehensive two-dimensional (2D) LC involving gSEC, i.e. SEC × gSEC and SEC × RPLC. In 2D-LC, the use of gSEC was especially advantageous as no breakthrough could occur.
Collapse
Affiliation(s)
- Leon E Niezen
- Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands.
| | - Jordy D Kruijswijk
- Centre for Analytical Sciences Amsterdam (CASA), the Netherlands; Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gerben B van Henten
- Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | - Bob W J Pirok
- Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | | | - Wolfgang Radke
- PSS Polymer Standards Service, In der Dalheimer Wiese 5, 55120, Mainz, Germany
| | - Harry J A Philipsen
- DSM Engineering Materials, Urmonderbaan 22, 6167 RD, Geleen, the Netherlands
| | - Govert W Somsen
- Centre for Analytical Sciences Amsterdam (CASA), the Netherlands; Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Peter J Schoenmakers
- Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| |
Collapse
|
3
|
Peng H, Yang X, Fang H, Zhang Z, Zhao J, Zhao T, Liu J, Li Y. Simultaneous effect of different chromatographic conditions on the chromatographic retention of pentapeptide derivatives (HGRFG and NPNPT). Front Chem 2023; 11:1171824. [PMID: 37143822 PMCID: PMC10151710 DOI: 10.3389/fchem.2023.1171824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Oligopeptides exhibit great prospects for clinical application and its separation is of great importance in new drug development. Methods: To accurately predict the retention of pentapeptides with analogous structures in chromatography, the retention times of 57 pentapeptide derivatives in seven buffers at three temperatures and four mobile phase compositions were measured via reversed-phase high-performance liquid chromatography. The parameters ( k H A , k A , and p K a ) of the acid-base equilibrium were obtained by fitting the data corresponding to a sigmoidal function. We then studied the dependence of these parameters on the temperature (T), organic modifier composition (φ, methanol volume fraction), and polarity ( P m N parameter). Finally, we proposed two six-parameter models with (1) pH and T and (2) pH and φ or P m N as the independent variables. These models were validated for their prediction capacities by linearly fitting the predicted retention factor k-value and the experimental k-value. Results: The results showed that log k H A and log k A exhibited linear relationships with 1 / T , φ or P m N for all pentapeptides, especially for the acid pentapeptides. In the model of pH and T, the correlation coefficient (R2) of the acid pentapeptides was 0.8603, suggesting a certain prediction capability of chromatographic retention. Moreover, in the model of pH and φ or P m N , the R2 values of the acid and neutral pentapeptides were greater than 0.93, and the average root mean squared error was approximately 0.3, indicating that the k-values could be effectively predicted. Discussion: In summary, the two six-parameter models were appropriate to characterize the chromatographic retention of amphoteric compounds, especially the acid or neutral pentapeptides, and could predict the chromatographic retention of pentapeptide compounds.
Collapse
Affiliation(s)
- Huan Peng
- Center for Brain Science, The First Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xiangrong Yang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- Kangya of Ningxia Pharmaceutical Co., Ltd., Yinchuan, China
| | - Huanle Fang
- Medical College, Peihua University, Xi’an, Shaanxi, China
| | - Zhongqi Zhang
- Department of Polypeptide Engineering, Active Protein and Polypeptide Engineering Center of Xi’an Hui Kang, Xi’an, Shaanxi, China
| | - Jinli Zhao
- Department of Polypeptide Engineering, Active Protein and Polypeptide Engineering Center of Xi’an Hui Kang, Xi’an, Shaanxi, China
| | - Te Zhao
- College of Electronic Engineering, Xidian University, Xi’an, Shaanxi, China
| | - Jianli Liu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- Medical College, Peihua University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li, ; Jianli Liu,
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li, ; Jianli Liu,
| |
Collapse
|
4
|
Absolute molar mass determination in mixed solvents. 2. SEC/MALS/DRI in a mix of two “nearly-isovirial” solvents. Anal Chim Acta 2022; 1231:340369. [DOI: 10.1016/j.aca.2022.340369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
|
5
|
Povolo C, Avolio R, Doria E, Marra A, Neresini M. Development and validation of an analytical method to ensure quality requirements of hydrolysed proteins intended for agricultural use as biostimulants. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
6
|
Entropic-Based Separation of Diastereomers: Size-Exclusion Chromatography with Online Viscometry and Refractometry Detection for Analysis of Blends of Mannose and Galactose Methyl-α-pyranosides at “Ideal” Size-Exclusion Conditions. Chromatographia 2020. [DOI: 10.1007/s10337-020-03983-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe separation of carbohydrate diastereomers by an ideal size-exclusion mechanism, i.e., in the absence of enthalpic contributions to the separation, can be considered one of the grand challenges in chromatography: Can a difference in the location of a single axial hydroxy group on a pyranose ring (e.g., the axial OH being located on carbon 2 versus on carbon 4 of the ring) sufficiently affect the solution conformational entropy of a monosaccharide in a manner which allows for members of a diastereomeric pair to be separated from each other by size-exclusion chromatography (SEC)? Previous attempts at answering this question, for aqueous solutions, have been thwarted by the mutarotation of sugars in water. Here, the matter is addressed by employing the non-mutarotating methyl-α-pyranosides of d-mannose and d-galactose. We show for the first time, using SEC columns, the entropically driven separation of members of this diastereomeric pair, at a resolution of 1.2–1.3 and with only a 0.4–1% change in solute distribution coefficient over a 25 °C range, thereby demonstrating the ideality of the separation. It is also shown how the newest generation of online viscometer allows for improved sensitivity, thereby extending the range of this so-called molar-mass-sensitive detector into the monomeric regime. Detector multidimensionality is showcased via the synergism of online viscometry and refractometry, which combine to measure the intrinsic viscosity and viscometric radius of the sugars continually across the elution profiles of each diastereomer, methyl-α-d-mannopyranoside and methyl-α-d-galactopyranoside.
Collapse
|
7
|
Meunier DM, Wade JH, Janco M, Cong R, Gao W, Li Y, Mekap D, Wang G. Recent Advances in Separation-Based Techniques for Synthetic Polymer Characterization. Anal Chem 2020; 93:273-294. [DOI: 10.1021/acs.analchem.0c04352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David M. Meunier
- Core R&D, Analytical Science, The Dow Chemical Company, Midland, Michigan 48640, United States
| | - James H. Wade
- Core R&D, Analytical Science, The Dow Chemical Company, Midland, Michigan 48640, United States
| | - Miroslav Janco
- Core R&D, Analytical Science, The Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - Rongjuan Cong
- Packaging and Specialty Plastics, Characterization, The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Wei Gao
- Core R&D, Analytical Science, The Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - Yongfu Li
- Core R&D, Analytical Science, The Dow Chemical Company, Midland, Michigan 48640, United States
| | - Dibyaranjan Mekap
- Packaging and Specialty Plastics, Characterization, Dow Benelux, 4542 NM Terneuzen, The Netherlands
| | - Grace Wang
- School of Cinematic Arts, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Striegel AM, Wilson WB, Sander LC. Detection Orthogonality in Macromolecular Separations. 2: Exploring Wavelength Orthogonality and Spectroscopic Invisibility Using SEC/DRI/UV/FL. Chromatographia 2019. [DOI: 10.1007/s10337-019-03805-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Striegel AM, Wilson WB, Sander LC. Detection Orthogonality in Macromolecular Separations. 2: Exploring Wavelength Orthogonality and Spectroscopic Invisibility Using SEC/DRI/UV/FL. Chromatographia 2019; 83:https://doi.org/10.1007/s10337-019-03805-x. [PMID: 33033412 PMCID: PMC7539643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We continue herein the exploration of detector orthogonality in size-based macromolecular separations. Previously [5], the sensitivity of viscometric detection was juxtaposed to that of differential refractometry (DRI) and light scattering (LS, both static and dynamic), and it was shown that viscometry is a truly orthogonal detection method to both DRI and LS. Here, via the size-exclusion chromatography (SEC) analysis of blends of polystyrene and poly(methyl methacrylate), we demonstrate the orthogonality of DRI to UV detection and, within the UV region of the electromagnetic spectrum, we also explore the phenomenon of "wavelength orthogonality:" Analytes observable by one detection method are shown to be spectroscopically invisible to another method, or even to the same detection method when operating at a different wavelength. While generally focusing on blends of analytes of different molar masses (different sizes in solution), we also investigate the less-explored case of blends of coeluting analytes (same sizes in solution) where detector orthogonality can inform one's knowledge of whether or not coelution has occurred. Finally, by incorporating a fluorescence (FL) detector into the experimental set-up, we demonstrate not only its orthogonality to DRI detection but also its sensitivity to the presence of even minor (≈ 1%) fluorescent components in a sample. We hope the present experiments assist in understanding the complementarity of different spectroscopic detection methods and also help highlight the potential role of FL detection, a method which has been largely overlooked in macromolecular separation science.
Collapse
Affiliation(s)
- André M. Striegel
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive MS 8392, Gaithersburg, MD 20899, USA
| | - Walter B. Wilson
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive MS 8392, Gaithersburg, MD 20899, USA
| | - Lane C. Sander
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive MS 8392, Gaithersburg, MD 20899, USA
| |
Collapse
|
10
|
Chen QP, Schure MR, Siepmann JI. Using molecular simulations to probe pore structures and polymer partitioning in size exclusion chromatography. J Chromatogr A 2018; 1573:78-86. [DOI: 10.1016/j.chroma.2018.08.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 11/26/2022]
|
11
|
Huang TY, Chi LM, Chien KY. Size-exclusion chromatography using reverse-phase columns for protein separation. J Chromatogr A 2018; 1571:201-212. [DOI: 10.1016/j.chroma.2018.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 01/02/2023]
|
12
|
Caltabiano AM, Foley JP, Striegel AM. Aqueous size-exclusion chromatography of polyelectrolytes on reversed-phase and hydrophilic interaction chromatography columns. J Chromatogr A 2017; 1532:161-174. [PMID: 29248345 DOI: 10.1016/j.chroma.2017.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
The size-exclusion separation of a water-soluble polyelectrolyte polymer, sodium polystyrene sulfonate (NaPSS), was demonstrated on common reversed-phase (C18, C4, phenyl, and cyano) and hydrophilic interaction chromatography (HILIC) columns. The effect of common solvents - acetonitrile (ACN), tetrahydrofuran (THF), and methanol (MeOH), used as mobile phase modifiers - on the elution of NaPSS and the effect of column temperature (within a relatively narrow range corresponding to typical chromatographic conditions, i.e., 10 °C-60 °C) on the partition coefficient, KSEC, were also investigated. Non-size-exclusion chromatography (non-SEC) effects can be minimized by the addition of an electrolyte and an organic modifier to the mobile phase, and by increasing the column temperature (e.g., to 50 °C or 60 °C). Strong solvents such as THF and ACN are more successful in the reduction of such effects than is the weaker solvent MeOH. The best performance is seen on medium polarity and polar stationary phases, such as cyanopropyl- and diol-modified silica (HILIC), where the elution of the NaPSS polyelectrolyte is by a near-ideal SEC mechanism. Hydrophobic stationary phases, such as C18, C4, and phenyl, require a higher concentration of a strong solvent modifier (THF) in the mobile phase to reduce non-SEC interactions of the solute with the stationary phase.
Collapse
Affiliation(s)
- Anna M Caltabiano
- Analytical Sciences and Development, GlaxoSmithKline, 1250 S. Collegeville Rd., Collegeville, PA, 19426, USA; Department of Chemistry, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA.
| | - Joe P Foley
- Department of Chemistry, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA
| | - André M Striegel
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, MS 8392, Gaithersburg, MD, 20899‑8392, USA
| |
Collapse
|