1
|
Sholokhova AY, Matyushin DD, Shashkov MV. Quantitative structure-retention relationships for pyridinium-based ionic liquids used as gas chromatographic stationary phases: convenient software and assessment of reliability of the results. J Chromatogr A 2024; 1730:465144. [PMID: 38996513 DOI: 10.1016/j.chroma.2024.465144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Ionic liquids, i.e., organic salts with a low melting point, can be used as gas chromatographic liquid stationary phases. These stationary phases have some advantages such as peculiar selectivity, high polarity, and thermostability. Many previous works are devoted to such stationary phases. However, there are still no large enough retention data sets of structurally diverse compounds for them. Consequently, there are very few works devoted to quantitative structure-retention relationships (QSRR) for ionic liquid-based stationary phases. This work is aimed at closing this gap. Three ionic liquids with substituted pyridinium cations are considered. We provide large enough data sets (123-158 compounds) that can be used in further works devoted to QSRR and related methods. We provide a QSRR study using this data set and demonstrate the following. The retention index for a polyethylene glycol stationary phase (denoted as RI_PEG), predicted using another model, can be used as a molecular descriptor. This descriptor significantly improves the accuracy of the QSRR model. Both deep learning-based and linear models were considered for RI_PEG prediction. The ability to predict the retention indices for ionic liquid-based stationary phases with high accuracy is demonstrated. Particular attention is paid to the reproducibility and reliability of the QSRR study. It was demonstrated that adding/removing several compounds, small perturbations of the data set can considerably affect the results such as descriptor importance and model accuracy. These facts have to be considered in order to avoid misleading conclusions. For the QSRR research, we developed a software tool with a graphical user interface, which we called CHERESHNYA. It is intended to select molecular descriptors and construct linear equations connecting molecular descriptors with gas chromatographic retention indices for any stationary phase. The software allows the user to generate several hundred molecular descriptors (one-dimensional and two-dimensional). Among them, predicted retention indices for popular stationary phases such as polydimethylsiloxane and polyethylene glycol are used as molecular descriptors. Various methods for selecting (and assessing the importance of) molecular descriptors have been implemented, in particular the Boruta algorithm, partial least squares, genetic algorithms, L1-regularized regression (LASSO) and others. The software is free, open-source and available online: https://github.com/mtshn/chereshnya.
Collapse
Affiliation(s)
- Anastasia Yu Sholokhova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, Moscow 119071, Russia
| | - Dmitriy D Matyushin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, Moscow 119071, Russia.
| | - Mikhail V Shashkov
- Boreskov Institute of Catalysis, 5 Lavrentieva Prospect, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Sholokhova AY, Borovikova SA. In-Column Dehydration Benzyl Alcohols and Their Chromatographic Behavior on Pyridinium-Based Ionic Liquids as Gas Stationary Phases. Molecules 2024; 29:3721. [PMID: 39202801 PMCID: PMC11357630 DOI: 10.3390/molecules29163721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
At present, stationary phases based on ionic liquids are a promising and widely used technique in gas chromatography, yet they remain poorly studied. Unfortunately, testing of "new" stationary phases is often carried out on a limited set of test compounds (about 10 compounds) of relatively simple structures. This study represents the first investigation into the physicochemical patterns of retention of substituted (including polysubstituted) aromatic alcohols on two stationary phases of different polarities: one based on pyridinium-based ionic liquids and the other on a standard polar phase. The retention order of the studied compounds on such stationary phases compared to the standard polar phase, polyethylene glycol (SH-Stabilwax), was compared and studied. It was shown that pyridinium-based ionic liquids stationary phase has a different selectivity compared to the SH-Stabilwax. Using a quantitative structure-retention relationships (QSRR) study, the differences in selectivity of the two stationary phases were interpreted. Using CHERESHNYA software, the importance of descriptors on different stationary phases was evaluated for the same data set. Different selectivity of the stationary phases correlates with different contributions of descriptors for the analytes under study. For the first time, we show that in-column dehydration is observed for some compounds (mostly substituted benzyl alcohols). This effect is worthy of further investigation and requires attention when analyzing complex mixtures. It suggests that when testing "new" stationary phases, it is necessary to conduct tests on a large set of different classes of compounds. This is because, in the case of using ionic liquids as an stationary phase, a reaction between the analyte and the stationary phase is possible.
Collapse
Affiliation(s)
- Anastasia Yu. Sholokhova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, 119071 Moscow, Russia;
| | | |
Collapse
|
3
|
Xiang Z, Huang S, Zhao LL, Zhang Z, Chen K, Cao W, Zheng K, Yan X. Base-catalyzed H/D exchange of polychlorinated biphenyls. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Smart K, Reyes K, Wilder K, Acree Jr WE, Verbeck GF, Golden TD. Ionic liquids as stationary phases for the gas chromatographic separation of fentanyl analogues. Forensic Chem 2022. [DOI: 10.1016/j.forc.2022.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Jalili V, Ghanbari Kakavandi M, Ghiasvand A, Barkhordari A. Microextraction techniques for sampling and determination of polychlorinated biphenyls: A comprehensive review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
|
7
|
|
8
|
Escobar-Arnanz J, Sanz ML, Ros M, Sanz J, Ramos L. Potential of topological descriptors to model the retention of polychlorinated biphenyls in different gas chromatography stationary phases, including ionic liquid-based columns. J Chromatogr A 2020; 1616:460844. [PMID: 31952814 DOI: 10.1016/j.chroma.2019.460844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
The aim of this study was to develop a statistical model based on a set of intuitive topological descriptors that will help to determine the influence of the polychlorinated biphenyls (PCBs) structural features on the chromatographic behavior of these analytes in a variety of gas chromatographic stationary phases, including the highly polar ionic liquid (IL)-based SLB-IL76 and SLB-IL60 columns. The model was developed using the stepwise multiple linear regression method, and constructed through several levels of increasing complexity to make evident the relative influence of the selected descriptors. The proposed model was easy to implement and provided similar satisfactory results irrespective of the dependent variables used (i.e., retention index or retention time) or the chromatographic conditions applied (i.e., pseudo-isotherm and programmed temperature) for IL-based phases. The model also allowed the correct prediction of the elution order of selected PCBs in these and other less polar phases evaluated (i.e., SW-10, DB-17, ZB-5 and HT-8). To our knowledge, this is the first models based on topological descriptors described in the literature that provided a satisfactory fitting of the PCB behavior in IL-based phases. Our results indicated that the mechanism governing the chromatographic separation of PCBs in these highly polar columns showed significant differences compared with those observed in other less polar stationary phases.
Collapse
Affiliation(s)
- J Escobar-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CISC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - M L Sanz
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CISC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - M Ros
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CISC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - J Sanz
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CISC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - L Ramos
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CISC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
9
|
Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process. Chromatographia 2020. [DOI: 10.1007/s10337-020-03854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Ultra-high thermal stability perarylated ionic liquids as gas chromatographic stationary phases for the selective separation of polyaromatic hydrocarbons and polychlorinated biphenyls. J Chromatogr A 2019; 1604:460466. [DOI: 10.1016/j.chroma.2019.460466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 01/16/2023]
|
11
|
Cui G, Yu H, Ma Y. Ionic liquids as mobile phase additives for determination of thiocyanate and iodide by liquid chromatography. J Sep Sci 2019; 42:1733-1739. [DOI: 10.1002/jssc.201801277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/30/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Ge Cui
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Hong Yu
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Ya‐jie Ma
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| |
Collapse
|
12
|
Retention Behaviour of Alkylated and Non-Alkylated Polycyclic Aromatic Hydrocarbons on Different Types of Stationary Phases in Gas Chromatography. SEPARATIONS 2019. [DOI: 10.3390/separations6010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gas chromatographic retention behaviour of 16 polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs on a new ionic liquid stationary phase, 1,12-di(tripropylphosphonium) dodecane bis(trifluoromethanesulfonyl)imide (SLB®-ILPAH) intended for the separation of PAH mixtures, was compared with the elution pattern on more traditional stationary phases: a non-polar phenyl arylene (DB-5ms) and a semi-polar 50% phenyl dimethyl siloxane (SLB PAHms) column. All columns were tested by injections of working solutions containing 20 parental PAHs from molecular weight of 128 to 278 g/mol and 48 alkylated PAHs from molecular weight of 142 to 280 g/mol on a one dimensional gas chromatography-mass spectrometry (GC-MS) system. The SLB PAHms column allowed separation of most isomers. The SLB®-ILPAH column showed a rather different retention pattern compared to the other two columns and, therefore, provided a potential for use in comprehensive two-dimensional GC (GC×GC). The ionic liquid column and the 50% phenyl column showed good thermal stability with a low bleed profile, even lower than that of the phenyl arylene “low bleed” column.
Collapse
|
13
|
Chen J, Huang Y, Wei X, Lei X, Zhao L, Guan M, Qiu H. Covalent organic nanospheres: facile preparation and application in high-resolution gas chromatographic separation. Chem Commun (Camb) 2019; 55:10908-10911. [DOI: 10.1039/c9cc05307g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A facile and rapid room-temperature solution-phase strategy was used to fabricate covalent organic nanospheres with uniform morphology and outstanding thermal/solvent stability for GC separation.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yanni Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xin Wei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xiaoqiang Lei
- Lanzhou Donglilong Information Technology Co., Ltd
- Lanzhou 730000
- China
| | - Liang Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Ming Guan
- Laboratory on Pollution Monitoring and Control
- College of Chemistry and Chemical Engineering
- Xinjiang Normal University
- Urumqi 830054
- China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
14
|
Trujillo-Rodríguez MJ, Nan H, Varona M, Emaus MN, Souza ID, Anderson JL. Advances of Ionic Liquids in Analytical Chemistry. Anal Chem 2018; 91:505-531. [PMID: 30335970 DOI: 10.1021/acs.analchem.8b04710] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - He Nan
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Marcelino Varona
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Miranda N Emaus
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Israel D Souza
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Jared L Anderson
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| |
Collapse
|
15
|
Patil RA, Talebi M, Sidisky LM, Berthod A, Armstrong DW. Gas chromatography selectivity of new phosphonium-based dicationic ionic liquid stationary phases. J Sep Sci 2018; 41:4142-4148. [DOI: 10.1002/jssc.201800695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Rahul A. Patil
- Department of Chemistry and Biochemistry; University of Texas at Arlington; Arlington TX USA
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry; University of Texas at Arlington; Arlington TX USA
| | | | - Alain Berthod
- Department of Chemistry and Biochemistry; University of Texas at Arlington; Arlington TX USA
- Institut des Sciences Analytiques; Université de Lyon 1; CNRS; Villeurbanne France
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry; University of Texas at Arlington; Arlington TX USA
| |
Collapse
|