1
|
Cortés-Bautista S, Molins-Legua C, Campíns-Falcó P. Miniaturized liquid chromatography in environmental analysis. A review. J Chromatogr A 2024; 1730:465101. [PMID: 38941795 DOI: 10.1016/j.chroma.2024.465101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
The greater and more widespread use of chemicals, either from industry or daily use, is leading to an increase in the discharge of these substances into the environment. Some of these are known to be hazardous to humans and the environment and are regulated, but there is a large and increasing number of substances which pose a potential risk even at low concentration and are not controlled. In this context, new techniques and methodologies are being developed to deal with this concern. Miniaturized liquid chromatography (LC) emerges as a greener and more sensitive alternative to conventional LC. Furthermore, advances in instrument miniaturization have made possible the development of portable LC instrumentation which may become a promising tool for in-situ monitoring. This work reviews the environmental applications of miniaturized LC over the last 15 years and discusses the different instrumentation, including off- and on-line pretreatment techniques, chromatographic conditions, and contributions to the environmental knowledge.
Collapse
Affiliation(s)
- S Cortés-Bautista
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - C Molins-Legua
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - P Campíns-Falcó
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
2
|
Montmorillonite-based polymethacrylate composite monoliths as stationary phase materials for food and pharmaceutical analysis in capillary liquid and gas chromatography. J Chromatogr A 2023; 1690:463695. [PMID: 36682103 DOI: 10.1016/j.chroma.2022.463695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
This work relates to the preparation of novel and promising stationary phases containing inorganic-organic composites for capillary liquid and gas chromatography. A naturally occurring montmorillonite was introduced to polymethacrylate monoliths, then used under different conditions of GC and HPLC at the same time. The performance of the columns was evaluated for the separation of alkane and alkylbenzene series in GC and capillary HPLC, respectively. While the bare monoliths failed to separate the model analytes, montmorillonite-based polymethacrylate allowed a full separation of the mixtures with Rs≥1.42. The columns were applied for the determination of myrcene and limonene isomers in the peel extracts of some fruits using GC, and for the analysis of active ingredients including aspirin, vitamin-C, caffeine, and ibuprofen extracted from common drugs using capillary HPLC. In GC, fast separation was achieved in 1.0 min with Rs of 6.53. The columns exhibited the best efficiency for myrcene with 20,900 plates/m. Using the capillary HPLC columns, the active ingredients were resolved in 10 min with Rs≥5.72. The efficiency values located between 12,800-21,700 plates/m in all cases. The developed methods were found to be linear in the range of 0.10-10.0 and 0.20-180 μg/mL for GC and HPLC, respectively. In comparison with commercial columns, the results in GC methods reveal that, despite their much shorter length, the prepared columns proved a faster separation with higher efficiency and comparable detection limits and chromatographic resolution. The prepared HPLC capillaries exposed lower run times and detection limits with comparable efficiency and resolution, and consume fewer samples and mobile phase solvents. The results demonstrate that the montmorillonite-based polymethacrylate composites are applicable as stationary phases for routine analysis and quality control of important fields such as food and pharmaceutical samples.
Collapse
|
3
|
Naturally Occurring Montmorillonite-Based Polymer Monolith Composites as Stationary Phases for Capillary Liquid and Gas Chromatography. SEPARATIONS 2022. [DOI: 10.3390/separations9120389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This work is associated with the preparation of capillary chromatographic columns containing inorganic-organic composites comprised of naturally occurring montmorillonite (MMT) clay mineral and polymethacrylate monolithic material. The prepared composites combine the best qualities of both constituents, offering desirable properties for use under the disparate conditions of both GC and HPLC at the same time. The stationary phases were investigated by scanning electron microscopy (SEM), the specific surface area, and thermogravimetric analysis (TGA) and examined in terms of various conditions utilized for GC and HPLC methods. The prepared columns demonstrated an excellent permeability and stability against common chromatographic conditions, such as the eluent type, flow rate, pressure, and temperature. The results confirmed that the addition of small amounts of MMT into the monolith induced significant improvement in the specific surface area, which contributed to the formation of more active sites and enhanced the retention of analytes. The registered column backpressures did not exceed 980 kPa and 16,500 kPa for the prepared GC and HPLC columns, respectively. The prepared columns were subjected to the separation of various interesting compounds possessing different chemistries and polarities, including alkanes, alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs), alcohols, ketones, phenols, some common organic solvents, and isomeric mixtures. Under the optimal conditions, the efficiency of the columns fell between 4900–38,500 plates m−1 for GC and 3400–58,800 plates m−1 for capillary HPLC applications. In all cases, the measured chromatographic resolution was more than 1.38, with excellent an peak symmetry and low tailing factors. In comparison with the most commonly used commercial columns, the polysiloxane open tubular column for GC and silica-based C18 packed column for HPLC, the prepared GC columns demonstrated a faster separation with a higher efficiency, comparable resolution and tailing factors, and lower consumption of carrier gas. Regarding the capillary columns prepared for HPLC, the chromatographic experiments exposed a much lower run time with a comparable efficiency and resolution and drastically lower consumption of mobile phase solvents and samples. The results demonstrate that the MMT-based polymethacrylate monolith composites are applicable as novel and promising separation media for analyzing various mixtures of interest in different fields, such as petrochemical and environmental samples.
Collapse
|
4
|
In-situ carbonizing of coal pitch on the surface of silica sphere as quasi-graphitized carbon stationary phase for liquid chromatography. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Critto EF, Medina G, Reta M, Acquaviva A. Determination of polycyclic aromatic hydrocarbons in surface waters by high performance liquid chromatography previous to preconcentration through solid-phase extraction by using polymeric monoliths. J Chromatogr A 2022; 1679:463397. [PMID: 35973336 DOI: 10.1016/j.chroma.2022.463397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
A simple, sensitive and reproducible solid-phase extraction method using plastic cartridges containing a monolithic sorbent (m-SPE), coupled to reverse phase liquid chromatography analysis, aiming to determine fifteen polycyclic aromatic hydrocarbons in surface water samples, was developed. The sorbent was easily prepared through a thermal polymerization reaction by using a mixture of n-butyl methacrylate as non-polar monomer and ethylene glycol dimethacrylate as crosslinker contained in a typical Polypropylene syringe cartridge. The effect of different parameters (type of hydrophobic monomer, elution solvent, sample volume, sorbent amount and sorbent load capacity) on the extraction efficiency was optimized. The optimal conditions were achieved by using n-butyl methacrylate as monomer, tetrahydrofurane (THF) as solvent for sorbent cleaning, THF:acetone (1:1) as elution solvent, 25.00 mL of sample volume, 600 µL of the polymerization mixture and 60 µg L-1 as sample loading capacity. Finally, the sorbent charge capacity, the reusability of the cartridges and the extraction efficiency of the m-SPE monolith, as compared with a typical C8 cartridge, were evaluated. Under the optimized experimental conditions, enrichment factors were between 76 and 103, relative recovery factors from 78 to 103%, accuracy values in the range of 58 to 98%, and inter-batch reproducibility values from between 2 and 10%, were obtained. The limits of detection and quantification were obtained by two different procedures: the signal to noise (S/N) ratios (3 and 10, respectively) and the IUPAC convention. The lowest LOD and LOQ values, obtained with the S/N ratios, were between 0.02 and 1.00 µg L-1, respectively whereas with the IUPAC convention the values were between 0.07 and 5 µg L-1. Using this procedure, several PAHs could be detected in the surface water sample taken from a river stream located in La Plata city (Buenos Aires Province, Argentina).
Collapse
Affiliation(s)
- Emilia Frickel Critto
- Facultad de Ciencias Exactas, UNLP, CONICET, Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) y División Química Analítica, Calle 47 esq. 115, La Plata B1900AJL, Argentina
| | - Giselle Medina
- Facultad de Ciencias Exactas, UNLP, CONICET, Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) y División Química Analítica, Calle 47 esq. 115, La Plata B1900AJL, Argentina
| | - Mario Reta
- Facultad de Ciencias Exactas, UNLP, CONICET, Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) y División Química Analítica, Calle 47 esq. 115, La Plata B1900AJL, Argentina
| | - Agustín Acquaviva
- Facultad de Ciencias Exactas, UNLP, CONICET, Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) y División Química Analítica, Calle 47 esq. 115, La Plata B1900AJL, Argentina.
| |
Collapse
|
6
|
Pirogov AV, Markova ES, Anan’ev VY. Passive Adsorbers Based on Carbon Materials and Their Comparison for Estimating the Oil and Gas Potentials of Rocks. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821090082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
LI Z, LI N, ZHAO T, ZHANG Z, WANG M. [Fabrication of nanomaterials incorporated polymeric monoliths and application in sample pretreatment]. Se Pu 2021; 39:229-240. [PMID: 34227305 PMCID: PMC9403804 DOI: 10.3724/sp.j.1123.2020.05030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 11/25/2022] Open
Abstract
Polymeric monolithic columns are fabricated by in situ polymerization of the corresponding monomer, crosslinkers, porogenic solvents and radical initiators within a mold. Compared with the conventional packed solid phase extraction adsorbents, polymeric monolithic columns with a continuous porous structure process distinctive advantages of rapid mass transfer and excellent permeability, which facilitates the extraction of trace amounts of the target from the matrix even at high flow velocities. Besides, these materials can be easily fabricated in situ within various cartridges, avoiding a further packing step associated with packed particulate adsorbents. Additionally, the abundant monomer availability, flexible porous structure, and wide applicable pH range make monoliths versatile for use in separation science. Thus, polymeric monolithic columns have been increasingly applied as efficient and promising extraction media for sample pretreatment food, pharmaceutical, biological and environmental analyses. However, these materials usually have the difficulty in morphology control and their interconnected porous micro-globular structure, which may result in low porosity, limited specific surface area and poor efficiency. In addition, polymeric monoliths suffer from the swelling in organic solvents, thus decreasing the service life and precision while increasing the cost consumption. Recently, the development of nanomaterial-incorporated polymeric monoliths with an improved ordered structure, enhanced adsorption efficiency and outstanding selectivity has attracted considerable attention. Nanoparticles are considered as particulates within the size range of 1-100 nm in at least one dimension, which endows them with unique optical, electrical and magnetic properties. These materials have a large surface area, excellent thermal and chemical stabilities, remarkable versatility, as well as a wide variety of active functional groups on their surface. With the aim of exploiting these advantages, researchers have shown great interest in applying nanomaterial-incorporated polymeric monoliths to separation science. Accordingly, significant progress has been achieved in this field. Nanomaterials can be entrapped via the direct synthesis of a polymerization solution that contains well dispersed nanomaterials in porogens. In addition, nanoparticles can be incorporated into the monolithic matrix by copolymerization and post-polymerization modification via specific interactions. Therefore, nanomaterial-incorporated polymeric monoliths combined the different shapes, chemical properties, and physical properties of the polymers with those of the nanoparticles. The presence of nanoparticles can improve the structural rigidity as well as the thermal and chemical stabilities of monolithic adsorbents. Besides, nanoparticles are capable of increasing the specific surface area and providing multiple active sites, which leads to enhanced extraction performance and selectivity of polymeric monolithic materials. In recent years, diverse types of nanomaterials, such as carbonaceous nanoparticles, metallic materials and metal oxides, metal-organic frameworks, covalent organic frameworks and inorganic nanoparticles have been extensively explored as hybrid adsorbents in the modes of solid phase extraction, solid phase microextraction, stir bar sorption extraction and on-line solid phase extraction. This review specifically summarizes the fabrication methods for nanomaterial incorporated polymeric monoliths and their application to the field of sample pretreatment. The existing challenges and future possible perspectives in the field are also discussed.
Collapse
Affiliation(s)
- Ziling LI
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Na LI
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Tengwen ZHAO
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Ziyang ZHANG
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Manman WANG
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
8
|
Nukatsuka I, Satoh R, Kihara S, Kitagawa F. A thin-layer solid-phase extraction-liquid film elution technique used for the enrichment of polycyclic aromatic hydrocarbons in water. J Sep Sci 2021; 44:1989-1997. [PMID: 33605531 DOI: 10.1002/jssc.202001165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022]
Abstract
In this article, we propose a novel microsolid-phase extraction and elution technique, which we called the thin-layer solid-phase extraction-liquid film elution technique. The thin-layer solid-phase extraction phase is an octadecylsilylated sol gel- coated porous silica thin film prepared on the outer wall of a test tube, which has a larger surface area for the extraction of the target compounds compared to a conventional solid-phase microextraction phase. After optimization of the extraction procedure for five types of polycyclic aromatic hydrocarbons, the liquid film elution technique was investigated. Liquid film elution is an elution technique wherein the compounds extracted into the thin-layer solid-phase extraction phase are eluted using a small volume of solvent film formed around the extraction phase. The results show that the elution can be carried out using 150 μL of eluent. Enrichment factors between 20 and 34 were obtained for polycyclic aromatic hydrocarbons containing more than four aromatic rings in 10 mL aliquots of aqueous samples. Finally, recoveries of 85-112% were obtained for polycyclic aromatic hydrocarbons containing more than four aromatic rings from spiked natural water samples using the thin-layer solid-phase extraction-liquid film elution technique.
Collapse
Affiliation(s)
- Isoshi Nukatsuka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Ryota Satoh
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Shigeki Kihara
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Fumihiko Kitagawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| |
Collapse
|
9
|
Mutaz E. Salih, Aqel A, Abdulkhair BY, Obbed MS, ALOthman ZA, Badjah-Hadj-Ahmed Y, Abdulaziz MA. Preparation and Characterization of Glycidyl Polymethacrylate Monolith Column and its Application for Simultaneous Determination of Paracetamol and Chlorzoxazone in Their Combined Pharmaceutical Formulations. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Mohammadnia M, Heydari R, Sohrabi MR, Motiee F. Determination of diazinon in water and food samples using magnetic solid‐phase extraction coupled with liquid chromatography. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Maryam Mohammadnia
- Department of Chemistry, Tehran North Branch Islamic Azad University Tehran Iran
| | - Rouhollah Heydari
- Research Center for Environmental Determinants of Health Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mahmoud Reza Sohrabi
- Department of Chemistry, Tehran North Branch Islamic Azad University Tehran Iran
| | - Fereshteh Motiee
- Department of Chemistry, Tehran North Branch Islamic Azad University Tehran Iran
| |
Collapse
|
11
|
Zhou Z, Lu J, Wang J, Zou Y, Liu T, Zhang Y, Liu G, Tian Z. Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118250. [PMID: 32197231 DOI: 10.1016/j.saa.2020.118250] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 05/29/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most hazardous pollutants and have attracted significant attention in the last decades. Up to now, rapid and on-site trace detection of PAHs remains a challenging issue. Here, taking advantage of the high sensitivity and reliable qualification of Surface-enhanced Raman Spectroscopy (SERS), we firstly carried out trace analyses of 16 typical PAHs in water at concentrations as low as 100-0.1 μg/L, depending on the number of aromatic rings of the molecule. Furthermore, owing to the simplicity of the liquid-liquid extraction (LLE) step, the sensitivity was further improved 2-3 orders of magnitude, and the lowest detectable concentrations were 100, 50, and 5 ng/L for anthracene, pyrene, and benzo[a]pyrene (the three PAHs typically found in heavily polluted waters), respectively. The LLE-SERS approach was successfully applied to the qualitative and quantitative analyses of different (ocean and coast) water samples being spiked by these three PAHs, which showed great promise as a trace detection tool of PAHs under water environments having different contaminant matrices.
Collapse
Affiliation(s)
- Zhifan Zhou
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jianglong Lu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Juyong Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yisong Zou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yulong Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Zhongqun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Aqel A, Alzahrani SS, Al-Rifai A, Alturkey M, Yusuf K, ALOthman ZA, Badjah-Hadj-Ahmed AY. Determination of Monoaromatic Hydrocarbons in Water Samples by Nano-Liquid Chromatography using a Composite Carbon Nanotubes- Lauryl Polymethacrylate Capillary Monolithic Column. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666180619144741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
This work reports a green analytical method for the determination of organic
environmental pollutants using nano-liquid chromatography with a self-made column for rapid, sensitive,
inexpensive and efficient analysis of BTX pollutants in water. The applications of monolithic nanoscale
columns for quantitative analysis of environmental real samples are very limited in the literature.
Methods:
A capillary column containing a composite of multi-walled carbon nanotubes incorporated
into a lauryl methacrylate-co-ethylene dimethacrylate porous monolithic polymer was fabricated for
the determination of BTX pollutants in real water samples.
Results:
Baseline separation was accomplished at 0.4 µL/min flow rate with UV-detection set at 208
nm. Under the optimum conditions, the calibration curves were validated over the range of 1.0-500
µg/L with R2 more than 0.9992. The detection limits of benzene, toluene, o-xylene and m/p-xylene
were 0.25, 0.05, 0.075 and 0.05 µg/L, respectively. After a simple extraction process with a theoretical
preconcentration factor equal to 200, the recovery values in Milli-Q, tap and sea water samples were
found to be ranged from 84.85 to 97.84% with %RSD less than 7.5. Furthermore, we reported a comparison
between our prepared composite column with a commercial C18 silica based column which is
the most used in such analytical field. Each column demonstrated its advantages from different analytical
aspects.
Conclusion:
The application of monolithic columns and nano-scale LC for routine analysis of environmental
samples is very promising as the use of monolithic capillary columns offers several advantages
over conventional scale particulate packed columns.
Collapse
Affiliation(s)
- Ahmad Aqel
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Soad S. Alzahrani
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma’a Al-Rifai
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed Alturkey
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zeid A. ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
13
|
A porous composite monolith sorbent of polyaniline, multiwall carbon nanotubes and chitosan cryogel for aromatic compounds extraction. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104562] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Shen YF, Zhang X, Mo CE, Huang YP, Liu ZS. Preparation of graphene oxide incorporated monolithic chip based on deep eutectic solvents for solid phase extraction. Anal Chim Acta 2020; 1096:184-192. [DOI: 10.1016/j.aca.2019.10.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/22/2022]
|
15
|
Mansouri E, Yousefi V, Ebrahimi V, Eyvazi S, Hejazi MS, Mahdavi M, Mesbahi A, Tarhriz V. Overview of ultraviolet‐based methods used in polycyclic aromatic hydrocarbons analysis and measurement. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.201900077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Elham Mansouri
- Molecular Medicine Research CenterBiomedicine InstituteTabriz University of Medical Sciences Tabriz Iran
| | - Vahid Yousefi
- Molecular Medicine Research CenterBiomedicine InstituteTabriz University of Medical Sciences Tabriz Iran
| | - Vida Ebrahimi
- Molecular Medicine Research CenterBiomedicine InstituteTabriz University of Medical Sciences Tabriz Iran
- Department of Pharmaceutical BiotechnologySchool of PharmacyShahid Beheshti University of Medical Sciences Tehran Iran
| | - Shirin Eyvazi
- Department of BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research CenterBiomedicine InstituteTabriz University of Medical Sciences Tabriz Iran
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
- School of Advanced Biomedical SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Mehri Mahdavi
- Molecular Medicine Research CenterBiomedicine InstituteTabriz University of Medical Sciences Tabriz Iran
| | - Asghar Mesbahi
- Molecular Medicine Research CenterBiomedicine InstituteTabriz University of Medical Sciences Tabriz Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research CenterBiomedicine InstituteTabriz University of Medical Sciences Tabriz Iran
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
16
|
Electrospun core-shell nanofibers as an adsorbent for on-line micro-solid phase extraction of monohydroxy derivatives of polycyclic aromatic hydrocarbons from human urine, and their quantitation by LC-MS. Mikrochim Acta 2019; 187:57. [DOI: 10.1007/s00604-019-4007-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
|
17
|
Guo B, Wang H, Lan D, Pang X, Li Y, Liu H, Yan H, Bai L. Effect of different initiators on temperature‐sensitive monolithic columns and application in online enrichment of β‐sitosterol. J Appl Polym Sci 2019. [DOI: 10.1002/app.47683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Bin Guo
- Key Laboratory of Pharmaceutical Quality Control of Hebei ProvinceCollege of Pharmaceutical Sciences, Hebei University Baoding 071002 China
- Key Laboratory of Medicinal Chemistry and Molecular DiagnosisMinistry of Education Baoding 071002 China
| | - Huimin Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei ProvinceCollege of Pharmaceutical Sciences, Hebei University Baoding 071002 China
- Key Laboratory of Medicinal Chemistry and Molecular DiagnosisMinistry of Education Baoding 071002 China
| | - Danan Lan
- Key Laboratory of Pharmaceutical Quality Control of Hebei ProvinceCollege of Pharmaceutical Sciences, Hebei University Baoding 071002 China
- Key Laboratory of Medicinal Chemistry and Molecular DiagnosisMinistry of Education Baoding 071002 China
| | - Xiaomin Pang
- Key Laboratory of Pharmaceutical Quality Control of Hebei ProvinceCollege of Pharmaceutical Sciences, Hebei University Baoding 071002 China
- Key Laboratory of Medicinal Chemistry and Molecular DiagnosisMinistry of Education Baoding 071002 China
| | - Yiming Li
- Key Laboratory of Medicinal Chemistry and Molecular DiagnosisMinistry of Education Baoding 071002 China
| | - Haiyan Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei ProvinceCollege of Pharmaceutical Sciences, Hebei University Baoding 071002 China
- Key Laboratory of Medicinal Chemistry and Molecular DiagnosisMinistry of Education Baoding 071002 China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular DiagnosisMinistry of Education Baoding 071002 China
- College of Public HealthHebei University Baoding 071002 China
| | - Ligai Bai
- Key Laboratory of Pharmaceutical Quality Control of Hebei ProvinceCollege of Pharmaceutical Sciences, Hebei University Baoding 071002 China
- Key Laboratory of Medicinal Chemistry and Molecular DiagnosisMinistry of Education Baoding 071002 China
| |
Collapse
|
18
|
Liu C, Ji Y, Jiang X, Yuan X, Zhang X, Zhao L. The determination of pesticides in tea samples followed by magnetic multiwalled carbon nanotube-based magnetic solid-phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. NEW J CHEM 2019. [DOI: 10.1039/c8nj06536e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient method regarding ultrasound-assisted extraction combined with magnetic solid-phase extraction (UA-MSPE) by UHPLC-MS/MS was set up for the determination of three pesticides in tea leaf samples.
Collapse
Affiliation(s)
- Chu Liu
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yinghe Ji
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xu Jiang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xucan Yuan
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xinyue Zhang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Longshan Zhao
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
19
|
Asadi M, Shahabuddin S, Mollahosseini A, Kaur J, Saidur R. Electrospun Magnetic Zeolite/Polyacrylonitrile Nanofibers for Extraction of PAHs from Waste Water: Optimized with Central Composite Design. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-1027-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Yazdanpanah M, Nojavan S. Micro-solid phase extraction of some polycyclic aromatic hydrocarbons from environmental water samples using magnetic β-cyclodextrin-carbon nano-tube composite as a sorbent. J Chromatogr A 2018; 1585:34-45. [PMID: 30528253 DOI: 10.1016/j.chroma.2018.11.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/23/2018] [Indexed: 11/29/2022]
Abstract
Previous studies have demonstrated the excellent capability of the cyclodextrins in pre-concentration of the organic pollutants from the aqueous solutions. In this work, β-cyclodextrin- multiwalled carbon nano-tube composite was produced from the reaction of oxidized carbon nano-tube with cyclodextrin in the presence of the hydrazine hydrate, and subsequently attaching this composite to the iron oxide nano-particles. Prepared magnetic nano-composite was characterized by the attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), the thermogravimetric analysis (TGA), the field emission scanning electron microscopy (FESEM), and the X-ray diffraction (XRD). This composite was applied to extract seven polycyclic aromatic hydrocarbons (PAHs) from the environmental water samples as follows: naphthalene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene. Analytes analysis was performed using the gas chromatography (GC) followed by the flame ionization detection (FID), and the predominant parameters influencing the extraction efficiency were investigated thoroughly. Under the optimized extraction conditions, the enrichment factor (EF) was ranging from 41.3 to 49.3 (EFmax = 50.0), and a suitable linearity was obtained (R2 = 0.992-0.997) within the range of 2.0-1000 ng/mL. The limits of the quantification and detection were 2.0-10.0 and 0.6-3.0 ng/mL, respectively. Finally, the synthesized magnetic sorbent and method were successfully utilized for the analysis of rain, well and agricultural water samples. The relative recoveries were ranging from 75.3-107.0% with an acceptable precision (5.5-8.3%) for PAHs extraction.
Collapse
Affiliation(s)
- Mina Yazdanpanah
- Department of analytical chemistry and pollutants, Shahid Beheshti University, G. C., Evin, Tehran 1983969411, Iran
| | - Saeed Nojavan
- Department of analytical chemistry and pollutants, Shahid Beheshti University, G. C., Evin, Tehran 1983969411, Iran.
| |
Collapse
|
21
|
Sun T, Wang D, Tang Y, Xing X, Zhuang J, Cheng J, Du Z. Fabric-phase sorptive extraction coupled with ion mobility spectrometry for on-site rapid detection of PAHs in aquatic environment. Talanta 2018; 195:109-116. [PMID: 30625520 DOI: 10.1016/j.talanta.2018.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 01/03/2023]
Abstract
The contamination of water is a high risk to human health, so there is an urgent need to rapidly detect water pollution in the field. Ion mobility spectrometry (IMS) is suitable for on-site analysis with the merit of rapid analysis and compact size. In this study, we developed a new method which coupled fabric phase sorptive extraction (FPSE) with IMS for rapid detection of polycyclic aromatic hydrocarbons (PAHs) in water present in the field. Polydimethylsiloxane (PDMS) was coated on the glass fiber cloth through a sol-gel reaction. After extracting the PAHs in water, the fabric coated PDMS could be directly put into the inlet of IMS instrument for thermal desorption. The PAHs were analyzed by the IMS instrument operated in the positive ion mode with a corona discharge (CD) ionization source. The primary parameters affecting extraction efficiency such as extraction time, extraction temperature, and ionic strength were investigated and optimized by using phenanthrene (Phe), benzo[a]anthracene (BaA) and benzo[a]pyrene (BaP) as model compounds. Under the optimal conditions, the FPSE-IMS detection limits were 5 ng ml-1,8 ng ml-1 and 10 ng ml-1 respectively. Satisfactory recoveries were obtained in the range from 80.5% to 100.5% by testing the spiked real water samples and validated by the standard method(HJ487-2009). Based on the results, the method of FPSE-IMS could be feasibly applied for monitoring the water quality on-site and providing early warning in the field.
Collapse
Affiliation(s)
- Tangqiang Sun
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Di Wang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Yan Tang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Xuebin Xing
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Jingcong Zhuang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Jiaxing Cheng
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Zhenxia Du
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
22
|
Pang J, Yuan D, Huang X. On-line combining monolith-based in-tube solid phase microextraction and high-performance liquid chromatography- fluorescence detection for the sensitive monitoring of polycyclic aromatic hydrocarbons in complex samples. J Chromatogr A 2018; 1571:29-37. [DOI: 10.1016/j.chroma.2018.07.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
|
23
|
Salih ME, Aqel A, Abdulkhair BY, Alothman ZA, Abdulaziz MA, Badjah-Hadj-Ahmed AY. Simultaneous Determination of Paracetamol and Chlorzoxazone in Their Combined Pharmaceutical Formulations by Reversed-phase Capillary Liquid Chromatography Using a Polymethacrylate Monolithic Column. J Chromatogr Sci 2018; 56:819-827. [DOI: 10.1093/chromsci/bmy058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/23/2018] [Indexed: 11/14/2022]
Affiliation(s)
- Mutaz E Salih
- Chemistry Department, College of Science, Sudan University for Science and Technology, Khartoum, Sudan
- Department of Chemistry-Hurrymilla, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Ahmad Aqel
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Babiker Y Abdulkhair
- Department of Chemistry, College of Science, Al-Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Zeid A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamad A Abdulaziz
- Chemistry Department, College of Science, Sudan University for Science and Technology, Khartoum, Sudan
| | | |
Collapse
|
24
|
Obbed MS, Aqel A, Al Othman Z, Badjah-Hadj-Ahmed AY. Preparation, characterization and application of polymethacrylate-based monolithic columns for fast and efficient separation of alkanes, alcohols, alkylbenzenes and isomeric mixtures by gas chromatography. J Chromatogr A 2018; 1555:89-99. [DOI: 10.1016/j.chroma.2018.04.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 11/24/2022]
|