1
|
Abdi K, Ezoddin M, Novasari V, Lamei N. Thermo-Assisted Deep Eutectic Solvent Based on Dispersive Liquid-Liquid Microextraction for Preconcentration of Phthalate Esters in Water Samples and Determination by Gas Chromatography With Flame Ionization Detection. J Sep Sci 2024; 47:e202300878. [PMID: 39304603 DOI: 10.1002/jssc.202300878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
A thermo-assisted deep eutectic solvent (DES) based on dispersive liquid-liquid microextraction followed by gas chromatography with flame ionization detection was developed for the analysis of five phthalate esters in different water samples. In the procedure involved, a DES composed of lidocaine, an amphiphilic amine, and oleic acid, was mixed with the sample assisted by ultrasound, and phase separation was achieved with increasing temperature. The heating of the extraction system induced the change of acid-base properties of the DES components. Thus, the formation of microdroplets of DES in the sample was provided, and two phases were separated. The structure of the upper hydrophobic layer was characterized by Fourier-transform infrared spectroscopy. Also, the amount of water in the DES phase was analyzed by mass spectrometer and Karl Fischer titration. Some critical variables on the extraction yield were assessed. The proposed method achieved 1.2-1.3 and 4.1-4.3 µg/L for limits of detection and limits of quantification, respectively. The intra-day and inter-day percentage relative standard deviations (n = 5) were determined to be in the range of 4.2-6.2% and 5.1-7.2%, respectively. Ultimately, this method analyzed the five phthalate esters in different water samples with high recoveries.
Collapse
Affiliation(s)
- Khosrou Abdi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ezoddin
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Venous Novasari
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Navid Lamei
- Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ji Z, Wang D, Wang J. A microfluidic ratiometric electrochemical aptasensor for highly sensitive and selective detection of 3,3',4,4'-tetrachlorobiphenyl. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4160-4167. [PMID: 38874006 DOI: 10.1039/d4ay00830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This study proposes a strategy using a microfluidic ratiometric electrochemical aptasensor to detect PCB77 with excellent sensitivity and specificity. This sensing platform combines a microfluidic chip, a wireless integrated circuit system for aptamer-based electrochemical detection, and a mobile phone control terminal for parameter configuration, identification, observation, and wireless data transfer. The sensing method utilizes a cDNA (MB-COOH-cDNA-SH) that is labelled with the redox probe Methylene Blue (MB) at the 5' end and has a thiol group at the 3' end. Additionally, it utilizes a single strand PCB aptamer that has been modified with ferrocenes at the 3' end (aptamer-Fc). Through gold-thiol binding, the labelled probe of MB-COOH-cDNA-SH was self-assembled onto the surface of an Au/Nb2CTx/GO modified electrode. On exposure to aptamer-Fc, it will hybridize with MB-COOH-cDNA-SH to form a stable double-stranded structure on the electrode surface. When PCB77 is present, aptamer-Fc binds specifically to the target, enabling the double-stranded DNA to unwind. Such variation caused changes in the differential pulse voltammetry (DPV) peak currents of both MB and Fc. A substantial improvement is observed in the ratio between the two DPV peaks. Under the optimum experimental conditions, this assay has a response that covers the 0.0001 to 1000 ng mL-1 PCB77 concentration range, and the detection limit is 1.56 × 10-5 ng mL-1. The integration of a ratiometric electrochemical aptasensor with designed microfluidic and integrated devices in this work is an innovative and promising approach that offers an efficient platform for on-site applications.
Collapse
Affiliation(s)
- Zhiheng Ji
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Dou Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Juan Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
3
|
Zhang M, Yang H, Yang K, Yang Q, Liu W, Yang X. Determination of sulfonamide antibiotics by magnetic porous carbon solid-phase extraction coupled with capillary electrophoresis. J Chromatogr A 2024; 1725:464926. [PMID: 38678693 DOI: 10.1016/j.chroma.2024.464926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Sulfonamide antibiotics (SAs) have been widely used as antibacterial drugs for the prevention and treatment of livestock and poultry diseases, but they seriously threaten human health because they can accumulate in humans. Therefore, it is highly important to develop methods for monitoring sulfonamide residues in aquaculture and food. In this research, based on the generation of porous carbon (PC) by the pyrolysis of sodium citrate, magnetic porous carbon (PC@Fe3O4) was synthesized by a solvothermal method and used as an adsorbent for the magnetic solid-phase extraction of SAs. The effects of the proportion of PC in PC@Fe3O4, adsorbent dosage, adsorption time, eluent type, extraction pH, salt concentration and eluent dosage on the extraction efficiency were systematically studied. The adsorption performance and behavior of PC@Fe3O4 on SAs were evaluated using adsorption kinetics and adsorption isotherms, and the adsorption mechanism was preliminarily discussed. Under optimal conditions, combined with capillary electrophoresis diode array detection, a sensitive detection method for SAs was developed. The proposed method can be used for the determination of six SAs in fishpond water and milk samples, with a linear range of 0.5-200 ng mL-1, detection limits of 0.24-0.34 ng mL-1, and spiked recoveries of 85.9-109.0 %.
Collapse
Affiliation(s)
- Maosen Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Hanyu Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Kaijing Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Qiang Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Wei Liu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China.
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China.
| |
Collapse
|
4
|
He Z, Lin H, Sui J, Wang K, Wang H, Cao L. Seafood waste derived carbon nanomaterials for removal and detection of food safety hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172332. [PMID: 38615776 DOI: 10.1016/j.scitotenv.2024.172332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Huiying Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
5
|
Chen S, Yu Z, Zhang W, Chen H, Ding Q, Xu J, Yu Q, Zhang L. Carboxylated mesoporous carbon hollow spheres for the efficient solid-phase microextraction of aromatic amines. Analyst 2023; 148:2527-2535. [PMID: 37140019 DOI: 10.1039/d3an00376k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An efficient and stable fiber coating is of great importance for solid-phase microextraction (SPME). In this study, carboxylated mesoporous carbon hollow spheres (MCHS-COOH) were developed as an efficient SPME coating of polar aromatic amines (AAs) for the first time. The MCHS-COOH coating material with high specific surface area (1182.32 m2 g-1), large pore size (10.14 nm), and rich oxygen-containing groups was fabricated via a facile H2O2 post-treatment. The as-prepared MCHS-COOH-coated fiber exhibited fast adsorption rate and excellent extraction properties, mainly due to its π-π interactions, hollow structure, and abundant affinity sites (carboxyl groups). Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method with low limits of detection (0.08-2.0 ng L-1), a wide linear range (0.3-500.0 ng L-1), and good repeatability (2.0-8.8%, n = 6) was developed for the analysis of AAs. The developed method was validated against three river water samples, with satisfactory relative recoveries being obtained. The above results demonstrated that the prepared MCHS-COOH-coated fiber exhibited good adsorption capacity, suggesting a promising application to monitor trace polar compounds in real environment.
Collapse
Affiliation(s)
- Shixiang Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Zejun Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Wenmin Zhang
- Department of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
6
|
In situ formation of deep eutectic solvents based dispersive liquid-liquid microextraction for the enrichment of trace phthalate esters in aqueous samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
7
|
Zhou S, Guo J, Zou Y, Wang L, Kaw HY, Quinto M, Meng LY, Dong M. Fast removal of phenolic compounds from water using hierarchical porous carbon nanofibers membrane. J Chromatogr A 2022; 1685:463624. [DOI: 10.1016/j.chroma.2022.463624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
8
|
Li S, Zhou B, Tong Y, Guo J, Jiang L, Yang R, Liu H, Zhang Y, Niu J, Huang S, Yuan S, Zhou Q. Magnetic solid phase extraction and determination of polychlorinated biphenyls in beverages utilizing C 60 modified magnetic polyamido-amine dendrimers in combination with gas chromatography-tandem mass spectrometry. Food Chem 2022; 396:133683. [PMID: 35843001 DOI: 10.1016/j.foodchem.2022.133683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/18/2022] [Accepted: 07/09/2022] [Indexed: 11/04/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants which are widely present in environment and harmful to human health. In this study, an efficient and convenient magnetic solid phase extraction method with C60 modified magnetic polyamido-amine (PAMAM) dendrimers as sorbents was established for enriching trace amounts of PCBs in beverage samples. Gas chromatography-tandem mass spectrometry (GC-MS/MS) was utilized for analysis of PCBs. Parameters affecting extraction efficiency were optimized. Under optimal parameters, good linearity can be achieved in concentration range of 0.001-20 μg L-1 and 0.002-20 μg L-1 for nine selected PCBs. The limits of detection for PCBs were in the range of 0.1-0.2 ng L-1. The spiked recoveries were in the range of 87.0 %-115.1 % (n = 3). The results proved that this established method was reliable for monitoring trace PCBs in beverage samples.
Collapse
Affiliation(s)
- Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Liushan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Ruochen Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Huanhuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yue Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jingwen Niu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shiyu Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shuai Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
9
|
Yan Q, Huang L, Mao N, Shuai Q. Covalent organic framework derived porous carbon as effective coating for solid phase microextraction of polycyclic aromatic hydrocarbons prior to gas-chromatography mass spectrometry analysis. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Preparation of porous carbon nanomaterials and their application in sample preparation: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116421] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Chi Z, Zhao S, Feng Y, Yang L. High-throughput monitoring of biomass conversion reaction with automatic time-resolved analysis. J Chromatogr A 2021; 1646:462145. [PMID: 33887542 DOI: 10.1016/j.chroma.2021.462145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Reactions of biomass conversions are of great importance in fine chemistry for substantial development. While numerous studies have been performed to search for functional materials to catalyze biomass conversions, a robust and high-throughput analytical method is rather limited, which may hamper further integration and automation of the reactions. Here we propose an automatic and sequential method for the investigation of glucose conversion. By combining sequential sample injection and high-speed capillary electrophoresis (HSCE) techniques, we can monitor the glucose conversion from the beginning toward the end with a good temporal resolution. The HSCE assays are performed using short capillaries (effective length of 10 cm, i.d./o.d. of 50 μm/365 μm), and the analytes are separated at an electric field of 467 V/cm and are detected by UV-absorption at 200 nm with mixed 0.2 mM CTAB, 10 mM borate, 20 mM sorbic acid (pH 12.2) as the background electrolyte. All compounds involved in the reaction, including all products (fructose, 5-hydroxymethylfurfural, formic acid and levulinic acid) and the remaining substrate glucose, are efficiently separated and simultaneously detected from just one analysis with a temporal resolution of one minute. The method exhibits high-resolution separation, a wide linear range with limit-of-detection down to μg/mL-level, as well as excellent repeatability in sequential analysis. It is indicated that the proposed method is of great value in the analysis of complicated biomass conversion and could be potentially applied in various catalytic chemical reactions.
Collapse
Affiliation(s)
- Zhongmei Chi
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Siqi Zhao
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Yunxiang Feng
- Jingke-Oude Science and Education Instruments Co. Ltd., Changchun, Jilin Province 130024, China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China.
| |
Collapse
|
12
|
Ji X, Feng J, Li C, Han S, Sun M, Feng J, Sun H, Fan J, Guo W. Corncob biochar as a coating for trace analysis of polycyclic aromatic hydrocarbons in water samples by online in-tube solid-phase microextraction coupled to high performance liquid chromatography. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Ghaemmaghami M, Yamini Y, Mousavi KZ. Accordion-like Ti3C2Tx MXene nanosheets as a high-performance solid phase microextraction adsorbent for determination of polycyclic aromatic hydrocarbons using GC-MS. Mikrochim Acta 2020; 187:151. [DOI: 10.1007/s00604-020-4123-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
|
14
|
Ji X, Sun M, Li C, Han S, Guo W, Feng J. Carbonized silk fibers for in‐tube solid‐phase microextraction to detect polycyclic aromatic hydrocarbons in water samples. J Sep Sci 2019; 42:3535-3543. [DOI: 10.1002/jssc.201900426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Wenjuan Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| |
Collapse
|
15
|
Cheng H, Song Y, Bian Y, Ji R, Wang F, Gu C, Yang X, Ye M, Ouyang G, Jiang X. Meso-/microporous carbon as an adsorbent for enhanced performance in solid-phase microextraction of chlorobenzenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:392-399. [PMID: 31108359 DOI: 10.1016/j.scitotenv.2019.05.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
There is urgent demand for the design of advanced coating materials for solid-phase microextraction (SPME) for water quality monitoring and assessment because of the global occurrence of chlorobenzenes (CBs). In this study, we proposed a dual-order activation method in which potassium hydroxide is used to modify pre-activated calcium citrate to synthesize a highly developed meso-/microporous carbon (MMC). The as-obtained MMC presented well-developed porosity with a super-high specific surface area (2638.09 m2 g-1), abundant meso-/micropores (0.5-10 nm), high hydrophobicity, excellent thermal stability (>720 °C), and a partly graphitized structure. As a coating material for headspace-SPME, the MMC-coated fiber exhibited outstanding extraction capability for CBs (up to 48.5 times higher than that of commercial fibers), which may be attributed to multiple interactions between the MMC and the pollutants, including size selectivity, micropore filling, π-π stacking and hydrophobicity. Finally, a satisfactory method using an MMC-coated fiber coupled with gas chromatography and electron capture detection was developed with good linearity (1-1000 ng L-1, R2 > 0.9982), high enrichment efficiencies (enrichment factors, 861-7819), low limits of detection (0.003-0.072 ng L-1), excellent repeatability (0.7-5.3%) and reproducibility (1.7-5.1%), and outstanding recoveries (90.18-103.02%) when applied to determine trace CBs in real water samples. These results suggest that MMC is a promising coating material for the SPME of CBs.
Collapse
Affiliation(s)
- Hu Cheng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Rongting Ji
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinglun Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
16
|
Cheng H, Wang F, Bian Y, Ji R, Song Y, Jiang X. Co- and self-activated synthesis of tailored multimodal porous carbons for solid-phase microextraction of chlorobenzenes and polychlorinated biphenyls. J Chromatogr A 2019; 1585:1-9. [DOI: 10.1016/j.chroma.2018.11.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/05/2023]
|
17
|
Zheng J, Huang J, Yang Q, Ni C, Xie X, Shi Y, Sun J, Zhu F, Ouyang G. Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|