1
|
Ohnuma K, Hirano-Kodaira M, Bannai M, Shimizu Y, Yamada M, Kinoshita K, Ngai-Wa Leung G, Ishii H. A broad-spectrum peptide screening method using an optimized solid-phase extraction and liquid chromatography-high-field asymmetric ion mobility spectrometry-mass spectrometry for doping control in equine urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8250-8267. [PMID: 39503331 DOI: 10.1039/d4ay01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The abuse of prohibited peptide-based drugs with a broad spectrum of chemical characteristics poses a significant concern for the horseracing industry. Recently, there has been a notable increase in positive cases of small-peptide drugs reported in equine and canine sports. In addition to small peptides, large peptides (over 2 kDa) with structural diversity have also entered the market in increasing numbers as drugs for humans and livestock. However, the simultaneous analysis of both small- and large-peptide-based drugs is still challenging. In this study, a screening method was developed to cover 74 analytes, including peptides, their catabolites, and/or their mimetics, with molecular weights ranging from 0.3 kDa to greater than 5 kDa. The simultaneous extraction of both small and large peptides was achieved using a weak cation-exchange solid-phase extraction cartridge with a mixture of different pore sizes (suitable for large peptides), followed by analysis using liquid chromatography high-field asymmetric ion mobility spectrometry tandem mass spectrometry (LC-FAIMS-MS/MS). For method validation, the limits of detection (LoDs), reproducibility, recovery, matrix effect, selectivity, and carryover were evaluated. Remarkably, the LoDs of ∼80% of the analytes were less than or equal to 50 pg ml-1, with the lowest LoD (1 pg ml-1) being observed for selected peptides in horse urine. These results indicate a substantial advancement in achieving comprehensive coverage for both small and large peptides with high sensitivity for the purpose of doping control in horseracing and equestrian sports.
Collapse
Affiliation(s)
- Kohei Ohnuma
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | | | - Michiko Bannai
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Yoshibumi Shimizu
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Masayuki Yamada
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Kenji Kinoshita
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Gary Ngai-Wa Leung
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Hideaki Ishii
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| |
Collapse
|
2
|
Takagi S, Suzuki N, Ishihama Y. Revisiting Protein Reversed-Phase Chromatography for Bottom-Up Proteomics. J Proteome Res 2024; 23:4704-4714. [PMID: 39293027 DOI: 10.1021/acs.jproteome.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
We revisited protein reversed-phase chromatography (RP), using state-of-the-art RP columns developed for biopharmaceuticals, such as monoclonal antibodies, in order to evaluate the suitability of this methodology as a prefractionation step for bottom-up proteomics. The protein RP prefractionation (Prot-RP) method was compared with two other widely used prefractionation methods, SDS-PAGE and high-pH peptide RP (Pept-RP) by using cell lysates as samples. The overlap between fractions of Prot-RP was comparable to that of SDS-PAGE, and the protein recovery was approximately 2-fold higher. On the other hand, the overlap between fractions of Prot-RP was slightly larger than that of Pept-RP, but Prot-RP was able to identify more protein termini and more isoform-specific peptides than Pept-RP. Our results indicate that the combination of highly efficient protein prefractionation with modern mass spectrometers is particularly effective for proteoform profiling from cellular samples.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa 254-0014, Japan
| | - Nobuyuki Suzuki
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa 254-0014, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
3
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Dhenin J, Lafont V, Dupré M, Krick A, Mauriac C, Chamot-Rooke J. Monitoring mAb proteoforms in mouse plasma using an automated immunocapture combined with top-down and middle-down mass spectrometry. Proteomics 2024; 24:e2300069. [PMID: 37480175 DOI: 10.1002/pmic.202300069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. Once the developability of a mAb drug candidate has been assessed, an important step is to check its in vivo stability through pharmacokinetics (PK) studies. The gold standard is ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) performed at the peptide level (bottom-up approach). However, these analytical techniques do not allow to address the different mAb proteoforms that can arise from biotransformation. In recent years, top-down and middle-down mass spectrometry approaches have gained popularity to characterize proteins at the proteoform level but are not yet widely used for PK studies. We propose here a workflow based on an automated immunocapture followed by top-down and middle-down liquid chromatography-tandem mass spectrometry (LC-MS/MS) approaches to characterize mAb proteoforms spiked in mouse plasma. We demonstrate the applicability of our workflow on a large concentration range using pembrolizumab as a model. We also compare the performance of two state-of-the-art Orbitrap platforms (Tribrid Eclipse and Exploris 480) for these studies. The added value of our workflow for an accurate and sensitive characterization of mAb proteoforms in mouse plasma is highlighted.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi R&D, Chilly-Mazarin, France
| | | | | | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
| |
Collapse
|
5
|
Naplekov D, Jadeja S, Fučíková AM, Švec F, Sklenářová H, Lenčo J. Easy, Robust, and Repeatable Online Acid Cleavage of Proteins in Mobile Phase for Fast Quantitative LC-MS Bottom-Up Protein Analysis─Application for Ricin Detection. Anal Chem 2023; 95:12339-12348. [PMID: 37565982 PMCID: PMC10448442 DOI: 10.1021/acs.analchem.3c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Sample preparation involving the cleavage of proteins into peptides is the first critical step for successful bottom-up proteomics and protein analyses. Time- and labor-intensiveness are among the bottlenecks of the commonly used methods for protein sample preparation. Here, we report a fast online method for postinjection acid cleavage of proteins directly in the mobile phase typically used for LC-MS analyses in proteomics. The chemical cleavage is achieved in 0.1% formic acid within 35 s in a capillary heated to 195 °C installed upstream of the analytical column, enabling the generated peptides to be separated. The peptides generated by the optimized method covered the entire sequence except for one amino acid of trastuzumab used for the method development. The qualitative results are extraordinarily stable, even over a long period of time. Moreover, the method is also suitable for accurate and repeatable quantification. The procedure requires only one manual step, significantly decreasing sample transfer losses. To demonstrate its practical utility, we tested the method for the fast detection of ricin. Ricin can be unambiguously identified from an injection of 10 ng, and the results can be obtained within 7-8 min after receiving a suspicious sample. Because no sophisticated accessories and no additional reagents are needed, the method can be seamlessly transferred to any laboratory for high-throughput proteomic workflows.
Collapse
Affiliation(s)
- Denis
K. Naplekov
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Alena Myslivcová Fučíková
- Department
of Biology, Faculty of Science, University
of Hradec Králové, Hradecká 1285, 500 03 Hradec Králové, Czech Republic
| | - František Švec
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Hana Sklenářová
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Juraj Lenčo
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Lignieres L, Legros V, Khelil M, Senecaut N, Lauber MA, Camadro JM, Chevreux G. Capillary liquid chromatography coupled with mass spectrometry for analysis of nanogram protein quantities on a wide-pore superficially porous particle column in top-down proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123566. [PMID: 36516651 DOI: 10.1016/j.jchromb.2022.123566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
In top-down proteomics experiments, intact protein ions are subjected to gas-phase fragmentation for MS analysis without prior digestion. This approach is used to characterize post-translational modifications and clipped forms of proteins, avoids several "inference" problems associated with bottom-up proteomics, and is well suited to the study of proteoforms. In the past decade, top-down proteomics has progressed rapidly, taking advantage of MS instrumentation improvements and the efforts of pioneering groups working to improve sample handling and data processing. The potential of this technology has been established through its successful use in a number of important biological studies. However, many challenges remain to be addressed like improving protein separation capabilities such that it might become possible to expand the dynamic range of whole proteome analysis, address co-elution and convoluted mass spectral data, and aid final data processing from peak identification to quantification. In this study, we investigated the use of a wide-pore silica-based superficially porous media with a high coverage phenyl bonding, commercially packed into customized capillary columns for the purpose of top-down proteomics. Protein samples of increasing complexity were tested, namely subunit digests of a monoclonal antibody, components of purified histones and proteins extracted from eukaryotic ribosomes. High quality mass spectra were obtained from only 100 ng of protein sample while using difluoroacetic acid as an ion pairing agent to improve peak shape and chromatographic resolution. A peak width at half height of about 15 s for a 45 min gradient time was observed on a complex mixture giving an estimated peak capacity close to 100. Most importantly, efficient separations were obtained for highly diverse proteins and there was no need to make method specific adjustments, suggesting this is a highly versatile and easy-to-use setup for top-down proteomics.
Collapse
Affiliation(s)
- Laurent Lignieres
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Véronique Legros
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Manel Khelil
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Nicolas Senecaut
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Matthew A Lauber
- Waters Corporation, 34, Maple Street, Milford, MA 01757-3696, United States
| | | | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
| |
Collapse
|
7
|
Lenčo J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholouš P, Urban J, Broeckhoven K, Nováková L, Švec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J Proteome Res 2022; 21:2846-2892. [PMID: 36355445 DOI: 10.1021/acs.jproteome.2c00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.
Collapse
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Denis K Naplekov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Oleg V Krokhin
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, WinnipegR3E 3P4, Manitoba, Canada
| | - Maria A Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Ken Broeckhoven
- Department of Chemical Engineering (CHIS), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050Brussel, Belgium
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
8
|
Boosting the Liquid Chromatography Separation of Complex Bispecific Antibody Products by Using the Multi-Isocratic Elution Mode. SEPARATIONS 2022. [DOI: 10.3390/separations9090243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In reversed-phase liquid chromatography (RPLC), the selectivity between major species and minor variants of protein biopharmaceutical products is always limited. Unfortunately, the stationary phase chemistry, type of mobile phase (organic modifier and salts) and temperature only have a very limited impact on selectivity. Therefore, instead of using a linear elution gradient, we evaluated a recently developed strategy, named the multi-isocratic elution mode, to improve the chromatographic resolution. In this contribution, a generic workflow involving the use of an Excel spreadsheet is provided for the rapid and successful development of multi-isocratic elution methods, without the need to use HPLC modeling software. This simple strategy was then successfully applied to very complex biopharmaceutical products; these included one reduced mAb-cytokine fusion protein and a mAb-domain-fusion (C-terminal) protein sample, containing numerous minor variants that were poorly separated from the major species. The addition of several isocratic steps during the chromatographic run provides a clear added value in terms of chromatographic selectivity for several variants, simplifying characterization of the sample with advanced MS tools. In addition to these advantages, some of the limitations of the multi-isocratic elution mode were also highlighted; these included the need to use a highly precise pumping device (preferably, a binary pumping system) and the need to prepare highly accurate mobile phases.
Collapse
|
9
|
Jaag S, Wen C, Peters B, Lämmerhofer M. Kinetic performance comparison of superficially porous, fully porous and monolithic reversed-phase columns by gradient kinetic plots for the separation of protein biopharmaceuticals. J Chromatogr A 2022; 1676:463251. [PMID: 35752149 DOI: 10.1016/j.chroma.2022.463251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
To find the best performing column for the analysis of protein-based biopharmaceuticals is a significant challenge as meanwhile numerous modern columns with distinct stationary phase morphologies are available for reversed-phase liquid chromatography. Especially when besides morphology also several other column factors are different, it is hard to decide about the best performing column a priori. To cope with this problem, in the present work 13 different reversed-phase columns dedicated for protein separations were systematically tested by the gradient kinetic plot method. A comprehensive comparison of columns with different morphologies (monolithic, fully porous and superficially porous particle columns), particle sizes and pore diameters as well as column length was performed. Specific consideration was also given to various monolithic columns which recently shifted a bit out of the prime focus in the scientific literature. The test proteins ranged from small proteins starting from 12 kDa, to medium sized proteins (antibody subunits obtained after IdeS-digestion and disulphide reduction) and an intact antibody. The small proteins cytochrome c, lysozyme and β-lactoglobulin could be analysed with similar performance by the best columns of all three column morphologies while for the antibody fragments specific fully porous and superficially porous particle columns were superior. A 450 Å 3,5 µm superficially porous particle column showed the best performance for the intact antibody while a 1.7 µm fully porous particle column with 300 Å showed equivalent performance to the best superficially porous column with thin shell and 400 Å pore size for proteins between 12 and 25 kDa. While the majority of the columns had C4 bonding chemistry, the silica monolith with C18 bonding and 300 Å mesopore size approximated the best performing particle columns and outperformed a C4 300 Å wide-pore monolith. The current work can support the preferred choice for the most suitable reversed-phase column for protein separations.
Collapse
Affiliation(s)
- Simon Jaag
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Chunmei Wen
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Benjamin Peters
- Instrumental Analytics R&D, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
10
|
Sadriaj D, Desmet G, Cabooter D. Taylor-Aris methodology for the experimental determination of molecular diffusion coefficients: Tutorial with focus on large biomolecules. J Chromatogr A 2021; 1664:462787. [PMID: 35033789 DOI: 10.1016/j.chroma.2021.462787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
High-Performance Liquid Chromatography (HPLC) is a key technique in the evaluation of biopharmaceuticals. To improve the separation of biopharmaceuticals, it is crucial to improve the fundamental understanding of the parameters governing their band broadening behavior. This can be obtained by a detailed assessment of the individual contributions to their mass transfer. For this purpose, a precise knowledge of the molecular diffusion coefficient (Dm) of biopharmaceuticals is required. Only little experimental data is available for the Dm-values of biopharmaceuticals under HPLC relevant conditions. Furthermore, none of the available equations that can be used to calculate Dm-values, allows to account for any conformational changes that might occur. The Taylor-Aris method is a very simple and absolute method that is often employed to determine Dm-coefficients. The Taylor-Aris method measures the band broadening of an analyte in an open tube under laminar conditions, wherein (1) longitudinal diffusion can be ignored, (2) the sample is fully radially equilibrated and (3) the contribution of the extra-column variance to the total variance is negligible. Moreover, since the open tubes are typically coiled for practical reasons, (4) the influence of secondary flows on the band broadening should be insignificant. In this tutorial paper, the impact of the four conditions mentioned above on the accuracy of the obtained Dm values is revisited. For this purpose, Dm values are measured for two representative compounds (Bovine Serum Albumin and Thiourea), and the obtained values are compared with literature data and theoretical recommendations. Based on these observations, a set of 'rules' for accurate and fast Dm measurements is put forward. Finally, an Interactive Tool (IT), combining these rules in a comprehensive way, is introduced and can be used to set up TA experiments.
Collapse
Affiliation(s)
- Donatela Sadriaj
- KU Leuven, Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, Leuven, Belgium; Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium
| | - Deirdre Cabooter
- KU Leuven, Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
11
|
Uncertainty of Size-Exclusion Chromatography Method in Quality Control of Bevacizumab Batches. SEPARATIONS 2021. [DOI: 10.3390/separations8090133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In addition to the analytical challenges related to the size and complexity of biopharmaceutical drugs, the inherent variability that arises due to their manufacturing process requires monitoring throughout the production process to ensure the safety and efficacy of the finished product. In this step, validation data should demonstrate that the process is controlled and reproducible, whereas the manufacturing process must ensure the quality and consistency of the product. For this, the manufacturer sets specification limits according with regulatory guidance. In such a situation, the comparison of different batches is required in order to describe and analyze the variability between them. However, it is unclear how great the variability of the analytical method would be or that in producing the batches. The estimation of the β-expectation tolerance intervals based on the variance components to account for both between-batch and within-batch variability was proposed as a specification limit to control the heterogeneity between batches at the time of manufacture and to verify whether batches meet specification limits. At this point, the variance components were computed by the maximum likelihood method using a linear random model. For this, the protein content, expressed as a percentage of the actual concentration relative to the claim value, and the dimer content (expressed as percentage) were used as critical quality attributes (CQAs) in the monitoring and control process. We used real data from six bevacizumab commercial batches.
Collapse
|
12
|
Bobály B, Keresztfalvi A, Gräber T, Schwarz MA. Superheated reversed phase chromatography with ultrashort columns for the analysis of therapeutic proteins. J Pharm Biomed Anal 2021; 203:114162. [PMID: 34082141 DOI: 10.1016/j.jpba.2021.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Mild or elevated temperatures are routinely used for the analysis of therapeutic proteins by reversed phase liquid chromatography. Generic conditions can be used for the analysis of monoclonal antibodies, and may be adapted for species derived thereof, for instance their immuno-conjugates. Beyond platform monoclonal antibodies, many novel, non-covalent protein complexes are also frequently pursued as protein therapeutics. These complexes, in reverse phased chromatography, may require extremely harsh, superheated conditions to dissociate and elute as interpretable profiles. In order to minimize on-column degradation under superheated conditions, the analysis time has to be reduced as much as possible. Using ultrashort columns and fast gradients is a promising approach in achieving informative separations within a minute, or even faster. Here the applicability of this approach, which supports maintaining levels of degradation products close to the intrinsic sample composition without further on-column degradation is demonstrated. NISTmAb as conventional IgG, a bispecific homodimer and a bispecific homotetramer were used for demonstrating differences in the elution characteristics and the necessity of using the proposed approach. The analysis of the bispecific homodimer was discussed in detail as a case study.
Collapse
Affiliation(s)
- Balázs Bobály
- Solvias AG, R&D Biopharmaceuticals, Römerpark 2, 4303 Kaiseraugst, Switzerland.
| | - Alex Keresztfalvi
- Solvias AG, R&D Biopharmaceuticals, Römerpark 2, 4303 Kaiseraugst, Switzerland
| | - Thomas Gräber
- Solvias AG, R&D Biopharmaceuticals, Römerpark 2, 4303 Kaiseraugst, Switzerland
| | - Maria Anna Schwarz
- Solvias AG, R&D Biopharmaceuticals, Römerpark 2, 4303 Kaiseraugst, Switzerland
| |
Collapse
|
13
|
Evaluation of strategies for overcoming trifluoroacetic acid ionization suppression resulted in single-column intact level, middle-up, and bottom-up reversed-phase LC-MS analyses of antibody biopharmaceuticals. Talanta 2021; 233:122512. [PMID: 34215127 DOI: 10.1016/j.talanta.2021.122512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022]
Abstract
A wide range of strategies for efficient chromatography and high MS sensitivity in reversed-phase LC-MS analysis of antibody biopharmaceuticals and their large derivates has been evaluated. They included replacing trifluoroacetic acid with alternative acidifiers, relevancy of elevated column temperature, use of dedicated stationary phases, and counteraction of the suppression effect of trifluoroacetic acid in electrospray ionization. At the column temperature of 60 °C, which significantly reduces in-column protein degradation, the BioResolve RP mAb Polyphenyl, BioShell IgG C4 columns performed best using mobile phases with full or partial replacement of trifluoroacetic acid with difluoroacetic acid in the analysis of intact antibodies. Similarly, 0.03% trifluoroacetic acid in combination with 0.07% formic acid is a good alternative in analyzing antibody chains at 60 °C. Collectively, the addition of 3% 1-butanol to the mobile phase acidified with 0.1% formic acid was the most efficient approach to simultaneously achieving good chromatographic separation and MS sensitivity for intact and reduced antibody biopharmaceuticals. Moreover, this mobile phase combined with the BioResolve RP mAb Polyphenyl column was subsequently demonstrated to provide excellent results for peptide mapping of antibody biopharmaceuticals fully comparable with those obtained using a state-of-the-art column for peptide separation, thus opening an avenue for a single-column multilevel analysis of these biotherapeutics.
Collapse
|
14
|
Performance of nanoflow liquid chromatography using core-shell particles: A comparison study. J Chromatogr A 2021; 1648:462218. [PMID: 33992996 DOI: 10.1016/j.chroma.2021.462218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 01/23/2023]
Abstract
Due to its unique structure, core-shell material has presented significantly improved chromatographic performance in comparison with conventional totally porous material. This has been well demonstrated in the analytical column format, e.g. 4.6 mm i.d. columns. In the proteomics field, there is always a demand for high resolution microseparation tools. In order to explore core-shell material's potential in proteomics-oriented microseparations, we investigated chromatographic performance of core-shell material in a nanoLC format, as well as its resolving power for protein digests. The results show core-shell nanoLC columns have similar van Deemter curves to the totally porous particle-packed nanoLC columns. For 100 µm i.d. capillary columns, the core-shell material does not have significantly better dynamics. However, both core-shell and totally porous particle-packed nanoLC columns have shown high efficiencies: plate heights of ~11 µm, equivalent to 90000 plates per meter, have been achieved with 5 µm particles. Using a 60 cm long core-shell nanoLC column, 72000 plates were realized in an isocratic separation of neutral compounds. For a 15 cm long nanoLC column, a maximum peak capacity of 220 has been achieved in a 5 hour gradient separation of protein digests, indicating the high resolving power of core-shell nanoLC columns. With a standard HeLa cell lysate as the sample, 2546 proteins were identified by using the core-shell nanoLC column, while 2916 proteins were identified by using the totally porous particle-packed nanoLC column. Comparing the two sets of proteomics data, it was found that 1830 proteins were identified by both columns, while 1086 and 716 proteins were uniquely identified by using totally porous and core-shell particle-packed nanoLC columns, respectively, suggesting their complementarity in nanoLC-MS based proteomics.
Collapse
|
15
|
Lardeux H, Duivelshof BL, Colas O, Beck A, McCalley DV, Guillarme D, D’Atri V. Alternative mobile phase additives for the characterization of protein biopharmaceuticals in liquid chromatography – Mass spectrometry. Anal Chim Acta 2021; 1156:338347. [DOI: 10.1016/j.aca.2021.338347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
|
16
|
Fekete S, Murisier A, Beck A, Lawhorn J, Ritchie H, Boyes B, Guillarme D. New wide-pore superficially porous stationary phases with low hydrophobicity applied for the analysis of monoclonal antibodies. J Chromatogr A 2021; 1642:462050. [PMID: 33735644 DOI: 10.1016/j.chroma.2021.462050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/25/2022]
Abstract
The article describes the development of new stationary phases for the analysis of proteins in reversed phase liquid chromatography (RPLC). The goal was to have columns offering high recovery at low temperature, low hydrophobicity and novel selectivity. For this purpose, three different ligands bound onto the surface of superficially porous silica-based particles were compared, including trimethyl-silane (C1), ethyl-dimethyl-silane (C2) and N-(trifluoroacetomidyl)-propyl-diisopropylsilane (ES-LH). These three phases were compared with two commercial RPLC phases. In terms of protein recovery, the new ES-LH stationary phase clearly outperforms the other phases for any type of biopharmaceutical sample, and can already be successfully used at a temperature of only 60°C. In terms of retention, the new ES-LH and C1 materials were the less retentive ones, requiring lower organic solvent in the mobile phase. However, it is important to mention that the stability of C1 phase was critical under acidic, high temperature conditions. Finally, some differences were observed in terms of selectivity, particularly for the ES-LH column. Besides the chemical nature of the stationary phase, it was found that the nature of organic modifier also plays a key role in selectivity.
Collapse
Affiliation(s)
- Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Amarande Murisier
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Jason Lawhorn
- Advanced Materials Technology, 3521 Silverside road, Suite 1-K, DE 19810, Wilmington, USA
| | - Harry Ritchie
- Advanced Materials Technology, 3521 Silverside road, Suite 1-K, DE 19810, Wilmington, USA
| | - Barry Boyes
- Advanced Materials Technology, 3521 Silverside road, Suite 1-K, DE 19810, Wilmington, USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
17
|
Luo C, DeStefano JJ, Langlois TJ, Boyes BE, Schuster SA, Godinho JM. Fundamental to achieving fast separations with high efficiency: A review of chromatography with superficially porous particles. Biomed Chromatogr 2021; 35:e5087. [PMID: 33566360 DOI: 10.1002/bmc.5087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 01/16/2023]
Abstract
Types of particles have been fundamental to LC separation technology for many years. Originally, LC columns were packed with large-diameter (>100 μm) calcium carbonate, silica gel, or alumina particles that prohibited fast mobile-phase speeds because of the slow diffusion of sample molecules inside deep pores. During the birth of HPLC in the 1960s, superficially porous particles (SPP, ≥30 μm) were developed as the first high-speed stationary-phase support structures commercialized, which permitted faster mobile-phase flowrates due to the fast movement of sample molecules in/out of the thin shells. These initial SPPs were displaced by smaller totally porous particles (TPP) in the mid-1970s. But SPP history repeated when UHPLC emerged in the 2000s. Stationary-phase support structures made from sub-3-μm SPPs were introduced to chromatographers in 2006. The initial purpose of this modern SPP was to enable chromatographers to achieve fast separations with high efficiency using conventional HPLCs. Later, the introduction of sub-2-μm SPPs with UHPLC instruments pushed the separation speed and efficiency to a very fast zone. This review aims at providing readers a comprehensive and up-to-date view on the advantages of SPP materials over TPPs historically and theoretically from the material science angle.
Collapse
Affiliation(s)
- Chuping Luo
- Advanced Materials Technology, Inc, Wilmington, Delaware, USA
| | | | | | - Barry E Boyes
- Advanced Materials Technology, Inc, Wilmington, Delaware, USA
| | | | | |
Collapse
|
18
|
Camperi J, Goyon A, Guillarme D, Zhang K, Stella C. Multi-dimensional LC-MS: the next generation characterization of antibody-based therapeutics by unified online bottom-up, middle-up and intact approaches. Analyst 2021; 146:747-769. [DOI: 10.1039/d0an01963a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review presents an overview of current analytical trends in antibody characterization by multidimensional LC-MS approaches.
Collapse
Affiliation(s)
- Julien Camperi
- Department of Protein Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| | - Alexandre Goyon
- Department of Small Molecule Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences
- University of Geneva
- 1206 Geneva
- Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO)
| | - Kelly Zhang
- Department of Small Molecule Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| | - Cinzia Stella
- Department of Protein Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| |
Collapse
|
19
|
Gritti F. Theoretical performance of multiple size-exclusion chromatography columns connected in series. J Chromatogr A 2020; 1634:461673. [PMID: 33189963 DOI: 10.1016/j.chroma.2020.461673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
The fundamental relationships are derived for the retention, peak width, and peak capacity of non-retained polymers eluting from multiple standard size-exclusion chromatography (SEC) columns connected in series. The standard SEC columns may have different dimensions and are packed with particles having distinct average particle diameters (APDs) and average mesopore sizes (AMSs). The performances (peak capacity, local resolution power, and sensitivity) of three standard SEC columns connected in series (called a tri-SEC column) packed with bridged-ethylene-hybrid (BEH) fully porous particles (FPPs) having three different APDs (1.7, 2.5, and 3.5 μm) and AMSs (200, 450, and 900 Å, respectively) are calculated as a function of the applied flow rate and size of polystyrene standards. Irrespective of the APD and AMS, the present investigation assumes isomorphological materials relative to the mesopore space of the three different BEH particles. The advantage of a 15 cm long tri-SEC column over a single reference SEC column (APD=3.5 μm, AMS=900 Å), which generates the same back pressure and separation window as those of the tri-SEC column, is expected at flow rates larger than the optimum flow rate generating the maximum peak capacity. The calculations predict a significant relative increase of the peak capacity (from +25% to +85%), resolution of small molecules (from +75% to +225%), and of the detection limit of intermediate size (from +15% to +70%) and largest polymers (from +25 to +110%). This is explained by 1) the exclusion of the largest polymers from the internal volume of the particles having the smallest mesopores (restricted access media) and 2) the minimum dispersion along the columns packed with the smallest particle sizes in the tri-SEC column. The main benefit of multi-SEC columns is to easily adjust the desired pore size distribution by properly selecting the lengths of each individual SEC column. The user can then control the pore size distribution for any specific separation problem. A potential application is theoretically demonstrated for the fast purification of monoclonal antibodies from metabolites, host cell proteins, aggregated forms, and from virus-like particles.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, 34 Maple Street, Milford, MA, 01757, USA.
| |
Collapse
|
20
|
Broeckhoven K, Desmet G. Advances and Innovations in Liquid Chromatography Stationary Phase Supports. Anal Chem 2020; 93:257-272. [DOI: 10.1021/acs.analchem.0c04466] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. Broeckhoven
- Vrije Universiteit Brussel, Department of Chemical Engineering (CHIS), Faculty of Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| | - G. Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering (CHIS), Faculty of Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
21
|
Jaag S, Shirokikh M, Lämmerhofer M. Charge variant analysis of protein-based biopharmaceuticals using two-dimensional liquid chromatography hyphenated to mass spectrometry. J Chromatogr A 2020; 1636:461786. [PMID: 33326927 DOI: 10.1016/j.chroma.2020.461786] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 01/04/2023]
Abstract
The profile of charge variants represents an important critical quality attribute of protein-based biopharmaceuticals, in particular of monoclonal antibodies, and must therefore becontrolled. In this work, 2D-LC methods for charge variant analysis were developed using a strong cation-exchange chromatography (SCX) as first dimension (1D) separation. Non-porous SCX (3 µm) particle columns and different mobile phases were evaluated using a test mixture of some standard proteins of different size and pI (comprising myoglobin, bovine serum albumin, cytochrome c, lysozyme and β-lactoglobulin) and two monoclonal IgG1 antibodies (NIST mAb and Secukinumab). The most promising 1D eluent for SCX was a salt-mediated pH-gradient system using a ternary mobile phase system with 2-(N-morpholino)ethanesulfonic acid, 1,3-diamino-2-propanol and sodium chloride. For the second dimension (2D), a desalting reversed-phase liquid chromatography (RP-LC) was chosen to enable the hyphenation of the charge variant separation with mass spectrometric (MS) detection. While for intact mAbs the 2D just served for desalting without additional selectivity, the 2D contributed some orthogonal selectivity for the mAb fragment separation. Various core-shell and monolithic columns were tested and variables such as gradient time and flow rate systematically optimized. Unexpectedly, a C4 400 Å column (3.4 µm diameter with 0.2 µm porous shell) provided higher peak capacities compared to the same 1000 Å column (2.7 µm diameter with 0.5 µm porous shell). A thinner shell appeared to be more advantageous than wider pores under high flow regime. An ultra-fast RP-LC method with a run time of one minute was developed using trifluoroacetic acid which was later replaced by formic acid as additive for better MS compatibility. The successful hyphenation of the two orthogonal separation modes, SCX and RP-LC, could be demonstrated in the multiple heart-cutting and the full comprehensive mode. MS analysis using a high-resolution quadrupole time-of-flight instrument enabled to identify different glycoforms and some major charge variants of the antibody at the intact protein level as well as on the subunit level (Fc/2, Lc, Fd') in a middle-up approach by 2D-LC-ESI-MS analysis.
Collapse
Affiliation(s)
- Simon Jaag
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Marina Shirokikh
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Lenčo J, Šemlej T, Khalikova MA, Fabrik I, Švec F. Sense and Nonsense of Elevated Column Temperature in Proteomic Bottom-up LC-MS Analyses. J Proteome Res 2020; 20:420-432. [PMID: 33085896 DOI: 10.1021/acs.jproteome.0c00479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Elevated column temperature represents a simple means for improving chromatographic separation of peptides. Here, we demonstrated the advantages of the column temperature in peptide separation using state-of-the-art columns. More importantly, we also determined how temperature can impair proteomic bottom-up analyses. We found that an elevated temperature in combination with the acidic pH of the mobile phase induced in-column peptide hydrolysis with high specificity to Asp and accelerated five modification reactions of amino acids. The positive effects of temperature dominated in the 30 min long gradients since the column operated at 90 °C provided the largest number of identified peptides and proteins. However, the adverse effects of temperature on peptide integrity in longer liquid chromatography-mass spectrometry (LC-MS) analyses required its reduction to obtain optimum results. The largest number of peptides was identified using the column maintained at 75 °C in 60 min long gradients, at 60 °C in 120 min long gradients, and at 45 °C in 240 min long gradients. Our results indicate that no universal column temperature exists for bottom-up LC-MS analyses. Quite the contrary, the temperature setting must be selected rationally to exploit the full capabilities of the state-of-the-art mass spectrometers in proteomic LC-MS analyses, with the gradient time being a critical factor.
Collapse
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Šemlej
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Maria A Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
23
|
Wei B, Jia W, Yang Y, Jazayri M, Fulchiron D, Jeong J, Cai Q, Li C, Briggs J, Ninonuevo M, Liu H, Liu Z, Zhang YT. Development of a rapid reversed-phase liquid chromatographic method for total free thiol quantitation in protein therapeutics. J Pharm Biomed Anal 2020; 189:113434. [DOI: 10.1016/j.jpba.2020.113434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
|
24
|
Kopp J, Zauner FB, Pell A, Hausjell J, Humer D, Ebner J, Herwig C, Spadiut O, Slouka C, Pell R. Development of a generic reversed-phase liquid chromatography method for protein quantification using analytical quality-by-design principles. J Pharm Biomed Anal 2020; 188:113412. [DOI: 10.1016/j.jpba.2020.113412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
|
25
|
Current and future trends in reversed-phase liquid chromatography-mass spectrometry of therapeutic proteins. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
From proof of concept to the routine use of an automated and robust multi-dimensional liquid chromatography mass spectrometry workflow applied for the charge variant characterization of therapeutic antibodies. J Chromatogr A 2020; 1615:460740. [DOI: 10.1016/j.chroma.2019.460740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 11/24/2022]
|
27
|
McCalley DV, Guillarme D. Evaluation of additives on reversed-phase chromatography of monoclonal antibodies using a 1000 Å stationary phase. J Chromatogr A 2020; 1610:460562. [DOI: 10.1016/j.chroma.2019.460562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022]
|
28
|
Nys G, Cobraiville G, Fillet M. Multidimensional performance assessment of micro pillar array column chromatography combined to ion mobility-mass spectrometry for proteome research. Anal Chim Acta 2019; 1086:1-13. [DOI: 10.1016/j.aca.2019.08.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 01/23/2023]
|
29
|
Fekete S, Beck A, Veuthey JL, Guillarme D. Proof of Concept To Achieve Infinite Selectivity for the Chromatographic Separation of Therapeutic Proteins. Anal Chem 2019; 91:12954-12961. [DOI: 10.1021/acs.analchem.9b03005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| |
Collapse
|
30
|
Nguyen JM, Smith J, Rzewuski S, Legido-Quigley C, Lauber MA. High sensitivity LC-MS profiling of antibody-drug conjugates with difluoroacetic acid ion pairing. MAbs 2019; 11:1358-1366. [PMID: 31500514 PMCID: PMC6816370 DOI: 10.1080/19420862.2019.1658492] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Reversed-phase liquid chromatography (RPLC) separations of proteins using optical detection generally use trifluoroacetic acid (TFA) because it is a strong, hydrophobic acid and a very effective ion-pairing agent for minimizing chromatographic secondary interactions. Conversely and in order to avoid ion suppression, analyses entailing mass spectrometry (MS) detection is often performed with a weaker ion-pairing modifier, like formic acid (FA), but resolution quality may be reduced. To gain both the chromatographic advantages of TFA and the enhanced MS sensitivity of FA, we explored the use of an alternative acid, difluoroacetic acid (DFA). This acid modifier is less acidic and less hydrophobic than TFA and is believed to advantageously affect the surface tension of electrospray droplets. Thus, it is possible to increase MS sensitivity threefold by replacing TFA with DFA. Moreover, we have observed DFA ion pairing to concomitantly produce higher chromatographic resolution than FA and even TFA. For this reason, we prepared and used MS-quality DFA in place of FA and TFA in separations involving IdeS digested, reduced NIST mAb and a proprietary antibody-drug conjugate (ADC), aiming to increase sensitivity, resolution and protein recovery. The resulting method using DFA was qualified and applied to two other ADCs and gave heightened sensitivity, resolution and protein recovery versus analyses using TFA. This new method, based on a purified, trace metal free DFA, can potentially become a state-of-the-art liquid chromatography-MS technique for the deep characterization of ADCs.
Collapse
Affiliation(s)
- Jennifer M Nguyen
- School of Science, University of Copenhagen , Frederiksberg , Denmark.,Chemistry Technology Center, Waters Corporation , Milford , MA , USA
| | - Jacquelynn Smith
- BioTherapeutics Pharmaceuticial Sciencies, Pfizer, Inc ., Chesterfield , MO , USA
| | - Susan Rzewuski
- Chemistry Technology Center, Waters Corporation , Milford , MA , USA
| | | | - Matthew A Lauber
- Chemistry Technology Center, Waters Corporation , Milford , MA , USA
| |
Collapse
|
31
|
Liang Y, Zhang L, Zhang Y. Well-Defined Materials for High-Performance Chromatographic Separation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:451-473. [PMID: 30939031 DOI: 10.1146/annurev-anchem-061318-114854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chromatographic separation has been widely applied in various fields, such as chemical engineering, precision medicine, energy, and biology. Because chromatographic separation is based on differential partitioning between the mobile phase and stationary phase and affected by band dispersion and mass transfer resistance from these two phases, the materials used as the stationary phase play a decisive role in separation performance. In this review, we discuss the design of separation materials to achieve the separation with high efficiency and high resolution and highlight the well-defined materials with uniform pore structure and unique properties. The achievements, recent developments, challenges, and future trends of such materials are discussed. Furthermore, the surface functionalization of separation ma-terials for further improvement of separation performance is reviewed. Finally, future research directions and the challenges of chromatographic separation are presented.
Collapse
Affiliation(s)
- Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| |
Collapse
|
32
|
Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 2019; 16:337-362. [DOI: 10.1080/14789450.2019.1578215] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alain Beck
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuel Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Yannis François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
33
|
D’Atri V, Fekete S, Clarke A, Veuthey JL, Guillarme D. Recent Advances in Chromatography for Pharmaceutical Analysis. Anal Chem 2018; 91:210-239. [DOI: 10.1021/acs.analchem.8b05026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Adrian Clarke
- Novartis Pharma AG, Technical Research and Development, Chemical and Analytical Development (CHAD), Basel, CH4056, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
34
|
Bobály B, D'Atri V, Lauber M, Beck A, Guillarme D, Fekete S. Characterizing various monoclonal antibodies with milder reversed phase chromatography conditions. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:1-10. [DOI: 10.1016/j.jchromb.2018.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
|
35
|
Bobály B, Veuthey JL, Guillarme D, Fekete S. New developments and possibilities of wide-pore superficially porous particle technology applied for the liquid chromatographic analysis of therapeutic proteins. J Pharm Biomed Anal 2018; 158:225-235. [DOI: 10.1016/j.jpba.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 01/01/2023]
|