1
|
Seavey CE, Doshi M, Colamarino A, Kim BN, Dickerson AK, Willenberg BJ. Graded Atmospheres of Volatile Pyrethroid Overlaid on Host Cues Can Be Established and Quantified Within a Novel Flight Chamber for Mosquito Behavior Studies. ENVIRONMENTAL ENTOMOLOGY 2023; 52:197-209. [PMID: 36794837 DOI: 10.1093/ee/nvad007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 06/18/2023]
Abstract
Spatial repellents are emerging as a promising approach to reduce vector-disease burden; however, the evolution of genetically resistant mosquitoes decreases repellent efficacy. The development of flight chambers to investigate spatial repellent application techniques is vital for sustainable mosquito control. We present an air-dilution chamber as a novel bioassay to study mosquito flight behavior responses to chemical gradients of the volatile, pyrethroid transfluthrin (TF). Air dilution was used to simulate a larger environment of stable concentration gradients verified with carbon dioxide (CO2) which was homogenously delivered and measured across the chamber to achieve a 5× inlet/outlet [CO2] ratio with 0.17 m/s outlet velocity. Female Aedes (Ae.) aegypti (Diptera: Culicidae, Linnaeus, 1762) were exposed to volatilized TF paired with heat, CO2, and Biogents-Sweetscent host-cues. Tandem solvent extraction-gas chromatography-mass spectrometry (SE-GC-MS) was used to quantify air samples taken during TF emanations with a limit of detection (LOD) and quantification (LOQ) of 2 ± 1 and 5 ± 2 parts-per-trillion (ppt) TF, respectively. Homogenous air diluted emanation of the spatial repellent TF was at least twice that of the 5× CO2 gradient with the same air flow in the chamber. The airborne TF concentrations the mosquitoes were exposed to range from 1 to 170 ppt. Video recordings of mosquito behavior during host-cues exposure revealed increased inlet activity, while exposure to TF protected host resulted in decreased inlet activity over time with inlet-outlet mosquito positional variation. This novel flight chamber design can simulate 'long'-range exposure with simultaneous quantitation of airborne spatial repellent to understand dose-dependent effects on mosquito behavior.
Collapse
Affiliation(s)
- Corey E Seavey
- University of Central Florida, College of Medicine, Department of Internal Medicine, FL 32827, USA
| | - Mona Doshi
- University of Central Florida, College of Medicine, Department of Internal Medicine, FL 32827, USA
| | - Angelo Colamarino
- University of Central Florida, College of Medicine, Department of Internal Medicine, FL 32827, USA
| | - Brian N Kim
- University of Central Florida, College of Engineering and Computer Science, Department of Electrical and Computer Engineering, FL 32816, USA
| | - Andrew K Dickerson
- Tickle College of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, TN 37996, USA
| | - Bradley J Willenberg
- University of Central Florida, College of Medicine, Department of Internal Medicine, FL 32827, USA
| |
Collapse
|
2
|
Casado-Carmona FA, Lasarte-Aragonés G, Kabir A, Furton KG, Lucena R, Cárdenas S. Fan-based device for integrated air sampling and microextraction. Talanta 2021; 230:122290. [PMID: 33934762 DOI: 10.1016/j.talanta.2021.122290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
In this article, a new air sampler based on a conventional computer fan is presented and evaluated. The fan has a double role as it acts as the air pumping system and supports the sorptive phases, which are located on its blades. The compact design and the reduced energy consumption (it can operate with a standard cell phone charger) confers high portability to the device. Also, a simple alternative integrated into the fan is proposed for using an internal standard during the sampling, thus increasing the precision of the measurements. In this first communication, sol-gel Carbowax 20 M coated fabric phases are used as sorptive membranes thanks to their planar geometry, mechanical and thermal stability, and their versatility covering different interaction chemistries. After sampling, the fabric phases are placed in a headspace vial, which is finally analyzed by gas chromatography-mass spectrometry. The sampler has been characterized for the extraction of selected volatile organic compounds (chloroform, benzaldehyde, toluene, and cyclohexane) from air and its versatility has also been evaluated by the identification of semi-volatile compounds in working place (toluene and xylene in laboratory residue storage room) and biogenic volatile compounds in natural samples (terpenes in fresh pine needles and orange peel samples).
Collapse
Affiliation(s)
- Francisco A Casado-Carmona
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Guillermo Lasarte-Aragonés
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - Rafael Lucena
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| |
Collapse
|
3
|
Njoroge MM, Fillinger U, Saddler A, Moore S, Takken W, van Loon JJA, Hiscox A. Evaluating putative repellent 'push' and attractive 'pull' components for manipulating the odour orientation of host-seeking malaria vectors in the peri-domestic space. Parasit Vectors 2021; 14:42. [PMID: 33430963 PMCID: PMC7802213 DOI: 10.1186/s13071-020-04556-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Novel malaria vector control approaches aim to combine tools for maximum protection. This study aimed to evaluate novel and re-evaluate existing putative repellent ‘push’ and attractive ‘pull’ components for manipulating the odour orientation of malaria vectors in the peri-domestic space. Methods Anopheles arabiensis outdoor human landing catches and trap comparisons were implemented in large semi-field systems to (i) test the efficacy of Citriodiol® or transfluthrin-treated fabric strips positioned in house eave gaps as push components for preventing bites; (ii) understand the efficacy of MB5-baited Suna-traps in attracting vectors in the presence of a human being; (iii) assess 2-butanone as a CO2 replacement for trapping; (iv) determine the protection provided by a full push-pull set up. The air concentrations of the chemical constituents of the push–pull set-up were quantified. Results Microencapsulated Citriodiol® eave strips did not provide outdoor protection against host-seeking An. arabiensis. Transfluthrin-treated strips reduced the odds of a mosquito landing on the human volunteer (OR 0.17; 95% CI 0.12–0.23). This impact was lower (OR 0.59; 95% CI 0.52–0.66) during the push-pull experiment, which was associated with low nighttime temperatures likely affecting the transfluthrin vaporisation. The MB5-baited Suna trap supplemented with CO2 attracted only a third of the released mosquitoes in the absence of a human being; however, with a human volunteer in the same system, the trap caught < 1% of all released mosquitoes. The volunteer consistently attracted over two-thirds of all mosquitoes released. This was the case in the absence (‘pull’ only) and in the presence of a spatial repellent (‘push-pull’), indicating that in its current configuration the tested ‘pull’ does not provide a valuable addition to a spatial repellent. The chemical 2-butanone was ineffective in replacing CO2. Transfluthrin was detectable in the air space but with a strong linear reduction in concentrations over 5 m from release. The MB5 constituent chemicals were only irregularly detected, potentially suggesting insufficient release and concentration in the air for attraction. Conclusion This step-by-step evaluation of the selected ‘push’ and ‘pull’ components led to a better understanding of their ability to affect host-seeking behaviours of the malaria vector An. arabiensis in the peri-domestic space and helps to gauge the impact such tools would have when used in the field for monitoring or control.![]()
Collapse
Affiliation(s)
- Margaret Mendi Njoroge
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.
| | - Adam Saddler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 833, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Sarah Moore
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 833, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Alexandra Hiscox
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.,London School of Hygiene and Tropical Medicine, ARCTEC, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
4
|
Eslami Jahromi K, Pan Q, Khodabakhsh A, Sikkens C, Assman P, Cristescu SM, Moselund PM, Janssens M, Verlinden BE, Harren FJM. A Broadband Mid-Infrared Trace Gas Sensor Using Supercontinuum Light Source: Applications for Real-Time Quality Control for Fruit Storage. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2334. [PMID: 31117174 PMCID: PMC6566869 DOI: 10.3390/s19102334] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022]
Abstract
We present a fully integrated and transportable multi-species trace gas sensor based on a mid-infrared (MIR) supercontinuum light source. The high brightness (surpassing synchrotron) and ultra-broad spectral bandwidth (2-4 μm) of this light source allows simultaneous detection of multiple broadband absorbing gas species. High sensitivity in the sub-ppmv level has been achieved by utilizing an astigmatic multipass cell. A grating-based spectrometer at a scanning rate of 20 Hz is developed employing a balanced detection scheme. A multi-component global fitting algorithm is implemented into a central LabVIEW program to perform real-time data analysis. The obtained concentration values are validated by the standard gas chromatography mass spectrometry (GC-MS) method. Field application of the sensor for quality control of stored fruits at a small scale is demonstrated, involving the detection of ethylene, ethanol, ethyl acetate, acetaldehyde, methanol, acetone, and water simultaneously. The sensor also shows promising potentials for other applications, such as environmental monitoring and biomedical research.
Collapse
Affiliation(s)
- Khalil Eslami Jahromi
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Qing Pan
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Amir Khodabakhsh
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Cor Sikkens
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Paul Assman
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Simona M Cristescu
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | | | - Maxime Janssens
- Flanders Center of Postharvest Technology, Willem de Croylaan 42, 3001 Heverlee, Belgium.
| | - Bert E Verlinden
- Flanders Center of Postharvest Technology, Willem de Croylaan 42, 3001 Heverlee, Belgium.
| | - Frans J M Harren
- Trace Gas Research Group, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Kwan MWC, Bosak A, Kline J, Pita MA, Giel N, Pereira RM, Koehler PG, Kline DL, Batich CD, Willenberg BJ. A Low-Cost, Passive Release Device for the Surveillance and Control of Mosquitoes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091488. [PMID: 31035536 PMCID: PMC6539509 DOI: 10.3390/ijerph16091488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/02/2022]
Abstract
Mosquitoes continue to be a major threat to global health, and the ability to reliably monitor, catch, and kill mosquitoes via passive traps is of great importance. Global, low-cost, and easy-to-use outdoor devices are needed to augment existing efforts in mosquito control that combat the spread of disease, such as Zika. Thus, we have developed a modular, portable, non-powered (passive), self-contained, and field-deployable device suitable for releasing volatiles with a wide range of applications such as attracting, repelling, and killing mosquitoes. This unique device relies on a novel nested wick and two-reservoir design that achieves a constant release of volatiles over several hundred hours. Devices loaded with one of either two compounds, geraniol or 1-methylpiperazine (MP), were tested in a controlled environment (32 °C and 70% relative humidity), and both compounds achieved a constant release from our devices at a rate of 2.4 mg/h and 47 mg/h, respectively. The liquid payload can be volatile attractants or repellants as well as mosquitocide-containing feeding solutions for capture and surveillance. This low-cost device can be utilized for both civilian and military mosquito control purposes, but it will be particularly important for protecting those in economically repressed environments, such as sub-Saharan Africa and Central and South America.
Collapse
Affiliation(s)
- Michael W C Kwan
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| | - Alexander Bosak
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| | - Jedidiah Kline
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Mario A Pita
- United States Department of Agriculture-Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA.
| | - Nicholas Giel
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| | - Roberto M Pereira
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611-0620, USA.
| | - Philip G Koehler
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611-0620, USA.
| | - Daniel L Kline
- United States Department of Agriculture-Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA.
| | - Christopher D Batich
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Bradley Jay Willenberg
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|