1
|
Shi W, Zhu SN, Xu H, Li KB, Zhang SQ, Zhang TY, Fang CY, Zhang XB, Han DM. Simultaneous Recovery of Bovine Serum Albumin and Bovine Immunoglobulin G with Dual-Ligand Hydrophobic Charge-Induction Chromatography. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Zheng H, Wang C, Pavase TR, Xue C. Fabrication of copolymer brushes grafted superporous agarose gels: Towards the ultimate ideal particles for efficient affinity chromatography. Colloids Surf B Biointerfaces 2022; 217:112705. [PMID: 35863235 DOI: 10.1016/j.colsurfb.2022.112705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
A composite immobilized-metal affinity agarose particle was designed for the selective separation and purification of histidine-tagged proteins from complicated biological samples. The composite particle was constructed using superporous agarose particles as supporting matrix, flexible copolymer brushes as scaffolds to render higher ligand densities, and Ni2+-chelated iminodiacetic acids as recognition elements. Superporous agarose composite particles endow high permeability and interfering substance tolerance. The copolymer brush was prepared by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide and glycidyl methacrylate, followed by iminodiacetic acids and Ni2+ ions. The physical and chemical properities of the composite particle were thoroughly investigated. The composite particles were shown to be able to selectively separate histidine-tagged recombinant proteins in the presence of high quantities of interfering chemicals in a model protein-binding experiment. By altering the temperature, the protein binding of the composite particles can be modulated. The superporous agarose particles supported polymer brush enables fast and efficient separation and purification of target proteins with high permeability, low backpressure, and high interfering matrix tolerance, which pave the path for bioseparation through designing and fabrication of novel agarose particles-based functional materials.
Collapse
Affiliation(s)
- Hongwei Zheng
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Changyun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tushar Ramesh Pavase
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Evaluation of hydrophobic charge-induction ligand efficiency for protein adsorption in one single cycle. J Chromatogr A 2022; 1668:462923. [DOI: 10.1016/j.chroma.2022.462923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/20/2022]
|
4
|
Yu L, Sun Y. Recent advances in protein chromatography with polymer-grafted media. J Chromatogr A 2021; 1638:461865. [PMID: 33453656 DOI: 10.1016/j.chroma.2020.461865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/19/2023]
Abstract
The strategy of using polymer-grafted media is effective to create protein chromatography of high capacity and uptake rate, giving rise to an excellent performance in high-throughput protein separation due to its high dynamic binding capacity. Taking the scientific development and technological innovation of protein chromatography as the objective, this review is devoted to an overview of polymer-grafted media reported in the last five years, including their fabrication routes, protein adsorption and chromatography, mechanisms behind the adsorption behaviors, limitations of polymer-grafted media and chromatographic operation strategies. Particular emphasis is placed on the elaboration and discussion on the behaviors of ion-exchange chromatography (IEC) with polymer-grafted media because IEC is the most suitable chromatographic mode for this kind of media. Recent advances in both the theoretical and experimental investigations on polymer-grafted media are discussed by focusing on their implications to the rational design of novel chromatographic media and mobile phase conditions for the development of high-performance protein chromatography. It is concluded that polymer-grafted media are suitable for development of IEC and mixed-mode chromatography with charged and low hydrophobic ligands, but not for hydrophobic interaction chromatography with high hydrophobic ligands and affinity chromatography with ligands that have single binding site on the protein.
Collapse
Affiliation(s)
- Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Li X, Sun Y, Dong X. Implications from γ-globulin adsorption onto cation exchangers fabricated by sequential alginate grafting and sulfonation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Liu R, Shi Q. Protein retention in dextran-grafted cation exchange chromatography: The influence of pHs, counterions and polymer structure. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
8
|
Lysozyme adsorption to cation exchanger derivatized by sequential modification of poly(ethylenimine)-Sepharose with succinic anhydride and ethanolamine: Effect of pH and ionic strength. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Protein adsorption to poly(ethylenimine)-modified Sepharose FF: VIII: Impacts of surface ion-exchange groups at different polymer grafting densities. J Chromatogr A 2020; 1610:460538. [DOI: 10.1016/j.chroma.2019.460538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022]
|
10
|
Poly(N,N-dimethylaminopropyl acrylamide)-grafted Sepharose FF: A new anion exchanger of very high capacity and uptake rate for protein chromatography. J Chromatogr A 2019; 1597:187-195. [DOI: 10.1016/j.chroma.2019.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
|
11
|
Wang J, Guan H, Han Q, Tan S, Liang Q, Ding M. Fabrication of Yb 3+-Immobilized Hydrophilic Phytic-Acid-Coated Magnetic Nanocomposites for the Selective Separation of Bovine Hemoglobin from Bovine Serum. ACS Biomater Sci Eng 2019; 5:2740-2749. [PMID: 33405606 DOI: 10.1021/acsbiomaterials.9b00074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, Yb3+-immobilized hydrophilic phytic-acid-coated magnetic nanocomposites were prepared through a facile route and used to selectively separatrf bovine hemoglobin. Hydrophilic phytic acid (PA) was coated onto the magnetic Fe3O4-PEI via electrostatic interactions, followed by finally chelating with Yb3+ ions, which could produce specific protein binding sites at room temperature in water, and complex instrumentation was not necessary. The performance of as-prepared hybrids (Fe3O4-PEI-PA-Yb3+) was assessed by selectively isolating bovine hemoglobin (BHb). The obtained maximum binding capacity was 347.3 mg g-1. The retained BHb could be eluted under simple elution via using 0.1 M of Na2CO3, giving a recovery of 83%. Moreover, the generation of nanocomposites was demonstrated. In addition, the PA and PEI could improve the hydrophilicity of nanoparticles and further reduce the nonspecific adsorption. Therefore, such nanocomposites were successfully employed to selectively bind and separate BHb from bovine serum as verified by SDS-PAGE and MALDI-TOF MS analysis, providing a new perspective for the isolation of heme proteins in proteomics.
Collapse
Affiliation(s)
- Jundong Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huiyuan Guan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Siyuan Tan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|