1
|
Xin X, Li C, Sun M, Guo W, Feng J. Silver nanoparticle-functionalized melamine-formaldehyde aerogel for online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons followed by HPLC-DAD analysis. J Chromatogr A 2024; 1719:464767. [PMID: 38422709 DOI: 10.1016/j.chroma.2024.464767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Based on the π-metal interaction between silver nanoparticles (AgNPs) and aromatic compounds, AgNPs were in-situ grown to melamine-formaldehyde (MF) aerogel for improving the extraction performance to polycyclic aromatic hydrocarbons (PAHs). The AgNPs/MF aerogel was regulated through varing the concentration of reactants, and characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray powder diffraction. As a new extraction coating, the AgNPs/MF aerogel was coated to stainless-steel wires for in-tube solid-phase microextraction (IT-SPME). The extraction effects of MF aerogels before and after the modification of AgNPs were compared, and the AgNPs greatly improved the extraction ability for PAHs reaching to 166.4 %. Combining IT-SPME with high performance liquid chromatographic detection, an online analytical system was constructed. Furthermore, the sampling volume and rate, concentration of organic solvent, and desorption time were optimized factor by factor. The online analytical method with low detection limits (0.003-0.010 μg L-1) and efficient enrichment factors (1998-3237) for PAHs was established, which fastly detected trace level of PAHs in drinking and environmental water samples. Compared with other methods, the method was comparable or better in the detection limit and linear range, indicating prospective application of the AgNPs/MF aerogel for sample preparation.
Collapse
Affiliation(s)
- Xubo Xin
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Wenjuan Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
2
|
Miki Y, Murakami H, Gotoh M, Umemura T, Esaka Y, Inoue Y, Teshima N. Novel chemically cross-linked self-molding particulate sorbents as solid-phase extraction media. ANAL SCI 2022; 39:749-754. [PMID: 36001293 DOI: 10.1007/s44211-022-00179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
Abstract
Here, we describe novel, chemically cross-linked, self-molding particulate polymer sorbents that are utilized as a molding-type solid-phase extraction medium (M-SPEM), which exhibits high permeability and rigidness. To fabricate such M-SPEM, first, polyethyleneimine (PEI)-modified reversed-phase (RP)-type particulate sorbents were synthesized, thereafter, they were chemically cross-linked by a polymer having many epoxy groups together with additional PEI. By optimizing the binding conditions of the particulate sorbents, the resultant M-SPEM has almost the same adsorption properties as the corresponding unmolded particulate sorbent for some polar (e.g., uracil and adenine) compounds. The binding technique proposed here is expected to facilitate the fabrication of molding-type sorbents and improve the performance of the SPE procedure.
Collapse
Affiliation(s)
- Yuta Miki
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan.
| | - Marin Gotoh
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392, Japan
| | - Yukihiro Esaka
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yoshinori Inoue
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| |
Collapse
|
3
|
Silver ion functionalized covalent organic polymer for selective online solid phase microextraction of unsaturated fatty acid methyl esters. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Dulińska-Litewka J, Dykas K, Felkle D, Karnas K, Khachatryan G, Karewicz A. Hyaluronic Acid-Silver Nanocomposites and Their Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 15:234. [PMID: 35009380 PMCID: PMC8745796 DOI: 10.3390/ma15010234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022]
Abstract
For the last years scientific community has witnessed a rapid development of novel types of biomaterials, which properties made them applicable in numerous fields of medicine. Although nanosilver, well-known for its antimicrobial, anti-angiogenic, anti-inflammatory and anticancer activities, as well as hyaluronic acid, a natural polysaccharide playing a vital role in the modulation of tissue repair, signal transduction, angiogenesis, cell motility and cancer metastasis, are both thoroughly described in the literature, their complexes are still a novel topic. In this review we introduce the most recent research about the synthesis, properties, and potential applications of HA-nanosilver composites. We also make an attempt to explain the variety of mechanisms involved in their action. Finally, we present biocompatible and biodegradable complexes with bactericidal activity and low cytotoxicity, which properties suggest their suitability for the prophylaxis and therapy of chronic wounds, as well as analgetic therapies, anticancer strategies and the detection of chemical substances and malignant cells. Cited studies reveal that the usage of hyaluronic acid-silver nanocomposites appears to be efficient and safe in clinical practice.
Collapse
Affiliation(s)
- Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland; (K.D.); (D.F.); (K.K.)
| | - Kacper Dykas
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland; (K.D.); (D.F.); (K.K.)
| | - Dominik Felkle
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland; (K.D.); (D.F.); (K.K.)
| | - Karolina Karnas
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland; (K.D.); (D.F.); (K.K.)
- Department of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Cracow, Balicka Street 122, 30-149 Krakow, Poland;
| | - Anna Karewicz
- Department of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland;
| |
Collapse
|
5
|
Saini RK, Prasad P, Shang X, Keum YS. Advances in Lipid Extraction Methods-A Review. Int J Mol Sci 2021; 22:13643. [PMID: 34948437 PMCID: PMC8704327 DOI: 10.3390/ijms222413643] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Extraction of lipids from biological tissues is a crucial step in lipid analysis. The selection of appropriate solvent is the most critical factor in the efficient extraction of lipids. A mixture of polar (to disrupt the protein-lipid complexes) and nonpolar (to dissolve the neutral lipids) solvents are precisely selected to extract lipids efficiently. In addition, the disintegration of complex and rigid cell-wall of plants, fungi, and microalgal cells by various mechanical, chemical, and enzymatic treatments facilitate the solvent penetration and extraction of lipids. This review discusses the chloroform/methanol-based classical lipid extraction methods and modern modifications of these methods in terms of using healthy and environmentally safe solvents and rapid single-step extraction. At the same time, some adaptations were made to recover the specific lipids. In addition, the high throughput lipid extraction methodologies used for liquid chromatography-mass spectrometry (LC-MS)-based plant and animal lipidomics were discussed. The advantages and disadvantages of various pretreatments and extraction methods were also illustrated. Moreover, the emerging green solvents-based lipid extraction method, including supercritical CO2 extraction (SCE), is also discussed.
Collapse
Affiliation(s)
| | - Parchuri Prasad
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea;
| |
Collapse
|
6
|
Zhao T, Tong S, Zhou S, Lin C, Lin X, Xie Z. A facile aptamer immobilization strategy to fabricate a robust affinity monolith for highly specific in-tube solid-phase microextraction. Analyst 2021; 146:5732-5739. [PMID: 34515698 DOI: 10.1039/d1an00993a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing a functional affinity monolithic column towards in-tube solid-phase microextraction (IT-SPME) for selective sample pretreatment is critical. Herein, a high-performance capillary affinity monolithic column with an ultra-high aptamer coverage density was rapidly fabricated via a simple adsorption strategy, in which aptamers with natural sequences were directly immobilized on an ammonium-based strongly cationic matrix. Limitations of the traditional biological or covalent methods such as time-consuming modification reactions, special requirement of active groups (e.g. -NH2 and -SH) on the aptamer, and low aptamer coverage density levels were avoided. An ultra-high coverage density of 8616 pmol μL-1 was achieved with excellent stability, and the highest aptamer-modification level among all the current methods was reached. Selective recognition and high recovery yields of the model mycotoxin ochratoxin A (OTA) were achieved in 95.9 ± 0.98%-97.9 ± 0.28% (n = 3). In particular, there was little cross-reactivity towards the OTB analogue of only 0.5% even in the case of 250 fold of the analogue OTB, which was not reported in previous affinity monoliths. Upon sample analysis, satisfactory discriminations of trace OTA were obtained at 93.7 ± 1.4%-95.5 ± 2.5% (n = 3) in beer and wheat. A facile and direct method for efficiently fabricating an aptamer-based affinity monolith towards online selective IT-SPME was proposed.
Collapse
Affiliation(s)
- Tingting Zhao
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Shiqian Tong
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Susu Zhou
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China. .,Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, P.R. China
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China. .,Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, P.R. China
| |
Collapse
|
7
|
Mattarozzi M, Riboni N, Maffini M, Scarpella S, Bianchi F, Careri M. Reversed-phase and weak anion-exchange mixed-mode stationary phase for fast separation of medium-, long- and very long chain free fatty acids by ultra-high-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2021; 1648:462209. [PMID: 34000595 DOI: 10.1016/j.chroma.2021.462209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022]
Abstract
Two commercial stationary phases allowing both reversed phase mechanism and anion-exchange with different selectivity, i.e. CSH C18 and Atlantis PREMIER BEH C18 AX, were tested for the separation of a complex mixture of 21 fatty acids (FAs) encompassing saturated medium-, long- and very long chain FAs, unsaturated long and very long chain FAs, cis/trans isomers, and isomers of odd- and branched-chain FAs. For this purpose, the role of surface area of stationary phase and the effect of pH of the mobile phase on the retention of the analytes were investigated. Separation was performed by ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS). BEH C18 AX was shown to be more versatile and to offer superior retention of these analytes to CSH C18 owing to a higher surface area and anion-exchange capacity up to pH 8.5. The UHPLC system allows shortening analysis time, the chromatographic analysis being accomplished in about 5 min, affording a high throughput of samples without the need for derivatization or ion-pairing reagents compared to techniques based upon gas chromatography approaches or LC. Finally, the application of the BEH C18 AX column using UHPLC-HRMS was demonstrated for the separation and unambiguous identification of FAs of nutritional interest in a dietary supplement sample.
Collapse
Affiliation(s)
- Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Monica Maffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Simona Scarpella
- Waters SPA, Viale T. Edison 110, 20099 Sesto San Giovanni, Milan, Italy
| | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy.
| |
Collapse
|
8
|
LI Z, LI N, ZHAO T, ZHANG Z, WANG M. [Fabrication of nanomaterials incorporated polymeric monoliths and application in sample pretreatment]. Se Pu 2021; 39:229-240. [PMID: 34227305 PMCID: PMC9403804 DOI: 10.3724/sp.j.1123.2020.05030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 11/25/2022] Open
Abstract
Polymeric monolithic columns are fabricated by in situ polymerization of the corresponding monomer, crosslinkers, porogenic solvents and radical initiators within a mold. Compared with the conventional packed solid phase extraction adsorbents, polymeric monolithic columns with a continuous porous structure process distinctive advantages of rapid mass transfer and excellent permeability, which facilitates the extraction of trace amounts of the target from the matrix even at high flow velocities. Besides, these materials can be easily fabricated in situ within various cartridges, avoiding a further packing step associated with packed particulate adsorbents. Additionally, the abundant monomer availability, flexible porous structure, and wide applicable pH range make monoliths versatile for use in separation science. Thus, polymeric monolithic columns have been increasingly applied as efficient and promising extraction media for sample pretreatment food, pharmaceutical, biological and environmental analyses. However, these materials usually have the difficulty in morphology control and their interconnected porous micro-globular structure, which may result in low porosity, limited specific surface area and poor efficiency. In addition, polymeric monoliths suffer from the swelling in organic solvents, thus decreasing the service life and precision while increasing the cost consumption. Recently, the development of nanomaterial-incorporated polymeric monoliths with an improved ordered structure, enhanced adsorption efficiency and outstanding selectivity has attracted considerable attention. Nanoparticles are considered as particulates within the size range of 1-100 nm in at least one dimension, which endows them with unique optical, electrical and magnetic properties. These materials have a large surface area, excellent thermal and chemical stabilities, remarkable versatility, as well as a wide variety of active functional groups on their surface. With the aim of exploiting these advantages, researchers have shown great interest in applying nanomaterial-incorporated polymeric monoliths to separation science. Accordingly, significant progress has been achieved in this field. Nanomaterials can be entrapped via the direct synthesis of a polymerization solution that contains well dispersed nanomaterials in porogens. In addition, nanoparticles can be incorporated into the monolithic matrix by copolymerization and post-polymerization modification via specific interactions. Therefore, nanomaterial-incorporated polymeric monoliths combined the different shapes, chemical properties, and physical properties of the polymers with those of the nanoparticles. The presence of nanoparticles can improve the structural rigidity as well as the thermal and chemical stabilities of monolithic adsorbents. Besides, nanoparticles are capable of increasing the specific surface area and providing multiple active sites, which leads to enhanced extraction performance and selectivity of polymeric monolithic materials. In recent years, diverse types of nanomaterials, such as carbonaceous nanoparticles, metallic materials and metal oxides, metal-organic frameworks, covalent organic frameworks and inorganic nanoparticles have been extensively explored as hybrid adsorbents in the modes of solid phase extraction, solid phase microextraction, stir bar sorption extraction and on-line solid phase extraction. This review specifically summarizes the fabrication methods for nanomaterial incorporated polymeric monoliths and their application to the field of sample pretreatment. The existing challenges and future possible perspectives in the field are also discussed.
Collapse
Affiliation(s)
- Ziling LI
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Na LI
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Tengwen ZHAO
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Ziyang ZHANG
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Manman WANG
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
9
|
Novel synthesized attapulgite nanoparticles-based hydrophobic monolithic column for in-tube solid-phase microextraction of thiosildenafil, pseudovardenafil, and norneosildenafil in functional foods. Anal Bioanal Chem 2021; 413:1871-1882. [PMID: 33469710 DOI: 10.1007/s00216-021-03155-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
In this study, a novel method which involved in-tube solid-phase microextraction (SPME) using an attapulgite (ATP) nanoparticles-based hydrophobic monolithic column was successfully developed. It was coupled with high-performance liquid chromatography-ultraviolet detection for the determination of three phosphodiesterase-5 (PDE-5) inhibitors, including thiosildenafil, pseudovardenafil, and norneosildenafil, in functional foods. The monolithic column was prepared by one-step polymerization, using 3-trimethoxysilylpropyl methacrylate-modified ATP nanoparticles and 1-butyl-3-vinylimidazolium bromide (VBIMBr) as the functional monomers, and ethylene glycol dimethacrylate (EDMA) as the cross-linker. The obtained poly(ATP-VBIMBr-EDMA) monolith was characterized by scanning electron microscopy equipped with energy-dispersive analysis of X-ray, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. The adsorption capacity, up to 2.00 μg/cm calculated by the Langmuir isotherm model, was about six times that of the poly(VBIMBr-EDMA) monolith. Crucial factors affecting the extraction efficiency, including sample solvent, elution solvent, flow rates of sampling loading and elution, sample loading volume, and elution volume, were investigated in details. Under the optimal in-tube SPME conditions, the proposed method showed good reproducibility with run-to-run, column-to-column, and batch-to-batch relative standard deviations less than 7.2%, and low limits of detection of 0.5-0.9 ng/mL in real samples. Thiosildenafil was detected in four types of functional foods with the contents of 1.30-4.78 μg/g. This newly proposed in-tube SPME method based on poly(ATP-VBIMBr-EDMA) monolith may provide a simple, efficient, and promising alternative to daily monitoring of PDE-5 inhibitors in functional foods.
Collapse
|
10
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
11
|
Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
13
|
Fang W, Zhang B, Han FY, Qin ZN, Feng YQ, Hu JM, Shen AG. On-Site and Quantitative Detection of Trace Methamphetamine in Urine/Serum Samples with a Surface-Enhanced Raman Scattering-Active Microcavity and Rapid Pretreatment Device. Anal Chem 2020; 92:13539-13549. [DOI: 10.1021/acs.analchem.0c03041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Fang
- School of Printing and Packaging, Wuhan University, Wuhan 430079, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Laboratory of Microwave and Vacuum Technology, Ji Hua Laboratory, Foshan 528000, P. R. China
| | - Biao Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fang-Yuan Han
- Electric Power Research Institute, Guangxi Power Grid Company, Ltd., Nanning 530023, P. R. China
| | - Zhang-Na Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, P. R. China
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ai-Guo Shen
- School of Printing and Packaging, Wuhan University, Wuhan 430079, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
14
|
Serra-Mora P, Herráez-Hernández R, Campíns-Falcó P. Bimodal copper oxide nanoparticles doped phase for the extraction of highly polar compounds by in-tube solid-phase microextraction coupled on-line to nano-liquid chromatography. J Chromatogr A 2020; 1617:460819. [DOI: 10.1016/j.chroma.2019.460819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
|
15
|
Recent advances and trends in miniaturized sample preparation techniques. J Sep Sci 2019; 43:202-225. [DOI: 10.1002/jssc.201900776] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
|
16
|
Li C, Sun M, Ji X, Han S, Feng J, Guo W, Feng J. Triazine‐based organic polymers@SiO
2
nanospheres for sensitive solid‐phase microextraction of polycyclic aromatic hydrocarbons. J Sep Sci 2019; 43:622-630. [DOI: 10.1002/jssc.201900941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Wenjuan Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| |
Collapse
|
17
|
Affiliation(s)
- Frederik A. Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Ma Y, Hao L, Lin X, Liu X, Qiu X, Zhang X, Hu X. An in-tube aptamer/gold nanoparticles coated capillary solid-phase microextraction for separation of adenosine in serum and urine samples. J Chromatogr A 2019; 1611:460617. [PMID: 31668868 DOI: 10.1016/j.chroma.2019.460617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022]
Abstract
As an endogenous nucleoside, adenosine was significant for the diagnosis and treatment of some diseases, such as schizophrenia. However, due to the complicated matrix interference, it was difficult to monitor trace or ultra-trace adenosine directly in bio-samples. In this contribution, a novel in-tube SPME technique based on aptamer/Au nanoparticles coated open tubular fused-silica capillary was established to separate and enrich adenosine in bio-samples with high affinity. Therefore, a uniform and dense AuNPs layer was coated on the inner surface of the open tubular capillary, and then adenosine aptamer was immobilized on AuNPs with a high capacity of 2.44 μg per 27-cm capillary. As a result, the capillary shown high selectivity to adenosine with a selectivity factor of 14.4 when compared with the scrambled aptamer/AuNPs coated capillary. Also, the extraction amount of adenosine was 2.8-24.8 times higher than those of its structural analogs and contrast, such as guanosine, uridine, cytidine, thymidine, and toluic acid. After the optimization of extraction conditions, the aptamer/AuNPs coated in-tube SPME-HPLC method was developed for the adenosine assay with the linear range of 0.002-0.100 μg mL-1 and the detection limit of 0.45 ng mL-1. Subsequently, the approach was applied for trace adenosine monitoring in human serum and urine samples. It showed a strong performance of reducing matrix interference and improving sensitivity, and the spiking recoveries of 89.9-92.6% and 91.1-94.5% were achieved respectively.
Collapse
Affiliation(s)
- Yanxia Ma
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Lixian Hao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xiangjun Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xiaofei Liu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xinni Qiu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xiaoting Zhang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xiaogang Hu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China.
| |
Collapse
|
19
|
Han S, Feng J, Ji X, Li C, Wang X, Tian Y, Sun M. Nano‐MoO
3
for highly selective enrichment of polycyclic aromatic hydrocarbons in in‐tube solid‐phase microextraction. J Sep Sci 2019; 42:3363-3371. [DOI: 10.1002/jssc.201900613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| |
Collapse
|
20
|
Wang J, Li W, Xiao J, Ni B, Li J, Wu J, Zhang Q. Hydroxyapatite-embedded monolithic column for selective on-line solid-phase extraction of adenosine triphosphate and its phosphorylated metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121769. [PMID: 31476577 DOI: 10.1016/j.jchromb.2019.121769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/19/2019] [Accepted: 08/18/2019] [Indexed: 01/03/2023]
Abstract
A novel hydroxyapatite-embedded monolithic column has been facilely prepared in a stainless-steel column with inner diameter of 2.1 mm by the strong adhesion of urea-formaldehyde (UF) resin and exploited as a sorbent for selective on-line solid-phase extraction (on-line SPE) of adenosine triphosphate and its phosphorylated metabolites. The composition for this preparation, including the amount of hydroxyapatite nanopowders and the porogen were investigated to obtain a suitable monolith with large surface area and satisfactory permeability. Owing to anion exchange interaction of hydroxyapatite and hydrophilic interaction of UF monolithic matrix, the prepared monolith showed good extraction efficiency and selectivity towards these phosphorylated analytes. Several parameters for on-line SPE, including ACN percentage in the sampling solution, collection time span, salt concentration of the eluent, sampling and elution flow rate, were optimized with respect to the extraction efficiencies of the target compounds. Under the optimized conditions, the LODs of the analytes were in the range of 0.01-0.04 μg/g, the recoveries in the spiked samples ranged from 78.3%-92.5% with RSDs <4.7%. Due to the excellent extraction ability towards phosphorylated compounds in practical samples, a simple on-line SPE-HPLC method using hydroxyapatite-embedded monolith as sorbent has been proposed for monitoring freshness of grass carp.
Collapse
Affiliation(s)
- Jiabin Wang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Wenbang Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Jianhua Xiao
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Bichen Ni
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Jianhua Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Jiulin Wu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|