1
|
Tomioka R, Ogata K, Ishihama Y. Quantitation of Host Cell Proteins by Capillary LC/IMS/MS/MS in Combination with Rapid Digestion on Immobilized Trypsin Column Under Native Conditions. Mass Spectrom (Tokyo) 2024; 13:A0152. [PMID: 39296308 PMCID: PMC11409222 DOI: 10.5702/massspectrometry.a0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/25/2024] [Indexed: 09/21/2024] Open
Abstract
Host cell protein (HCP) impurities are considered a critical quality attribute of biopharmaceuticals because of their potential to compromise safety and efficacy, and LC/MS-based analytical methods have been developed to identify and quantify individual proteins instead of employing enzyme-linked immunosorbent assay to assess total HCP levels. Native digestion enables highly sensitive detection of HCPs but requires overnight incubation to generate peptides, limiting the throughput of sample preparation. In this study, we developed an approach employing native digestion on a trypsin-immobilized column to improve the sensitivity and throughput. We examined suitable databases for the identification of HCPs derived from Chinese hamster ovary (CHO) cells and selected RefSeq's Chinese Hamster as the optimal database. Then, we investigated methods to identify HCPs with greater efficiency than that of denatured in-solution digestion. Native in-column digestion not only reduced the digestion time from overnight to 10 min but also increased the number of quantified HCPs from 154 to 226. In addition to this rapid digestion methodology, we developed high-throughput LC/MS/MS with a monolithic silica column and parallel reaction monitoring-parallel accumulation-serial fragmentation. The optimized system was validated with synthetic peptides derived from high-risk HCPs, confirming excellent linearity, precision, accuracy, and low limit of detection (LOD) and limit of quantification (LOQ) (1-3 ppm). The optimized digestion and analysis method enabled high-throughput quantification of HCPs, and is expected to be useful for quality control and characterization of HCPs in antibody drugs.
Collapse
Affiliation(s)
- Ryota Tomioka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Shionogi & Co., Ltd., Pharmaceutical Technology Research Division, Toyonaka, Osaka 561-0825, Japan
| | - Kosuke Ogata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
2
|
Hutchinson J, Lu Y, Grew L, Cui T. Improved clearance of host cell protein impurities at the polishing purification step using multimodal chromatography. J Chromatogr A 2024; 1732:465229. [PMID: 39128237 DOI: 10.1016/j.chroma.2024.465229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
In biotherapeutic protein production, host cell proteins (HCPs) are one of the main process related impurities which must be cleared and controlled through downstream processing. In this paper, we studied a novel therapeutic protein molecule which had a high level of HCP co-purification throughout the downstream process. Here, we focused on the polishing purification step and developed an effective strategy for improving HCP clearance using multimodal chromatography (MMC) resin, Nuvia cPrime. A high throughput process development (HTPD) workflow was used to identify the resin and process conditions which could enable significant HCP clearance while maintaining acceptable product quality and process performance. HCP analysis of gradient elution fractions on multimodal chromatography found that HCPs eluted at the beginning of the gradient, at a lower salt concentration than the therapeutic protein. Based on these findings, a step elution process involving an intermediate low salt wash was developed to clear weak-binding HCPs, while retaining the therapeutic protein on the column. This strategy was highly effective and enabled 80 % reduction in total HCP content, including some problematic and difficult to remove candidates such as Peroxiredoxin-1, Serine protease HTRA1, Clusterin and Lipoprotein lipase.
Collapse
Affiliation(s)
- Jack Hutchinson
- Purification Process Sciences, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Analytical Sciences, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Yali Lu
- Analytical Sciences, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, US
| | - Lara Grew
- Robotics and Automation, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tingting Cui
- Purification Process Sciences, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
3
|
Kiyonami R, Melani R, Chen Y, Leon AID, Du M. Applying UHPLC-HRAM MS/MS Method to Assess Host Cell Protein Clearance during the Purification Process Development of Therapeutic mAbs. Int J Mol Sci 2024; 25:9687. [PMID: 39273634 PMCID: PMC11396427 DOI: 10.3390/ijms25179687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Host cell proteins (HCPs) are one of the process-related impurities that need to be well characterized and controlled throughout biomanufacturing processes to assure the quality, safety, and efficacy of monoclonal antibodies (mAbs) and other protein-based biopharmaceuticals. Although ELISA remains the gold standard method for quantification of total HCPs, it lacks the specificity and coverage to identify and quantify individual HCPs. As a complementary method to ELISA, the LC-MS/MS method has emerged as a powerful tool to identify and profile individual HCPs during the downstream purification process. In this study, we developed a sensitive, robust, and reproducible analytical flow ultra-high-pressure LC (UHPLC)-high-resolution accurate mass (HRAM) data-dependent MS/MS method for HCP identification and monitoring using an Orbitrap Ascend BioPharma Tribrid mass spectrometer. As a case study, the developed method was applied to an in-house trastuzumab product to assess HCP clearance efficiency of the newly introduced POROS™ Caprylate Mixed-Mode Cation Exchange Chromatography resin (POROS Caprylate mixed-mode resin) by monitoring individual HCP changes between the trastuzumab sample collected from the Protein A pool (purified by Protein A chromatography) and polish pool (purified by Protein A first and then further purified by POROS Caprylate mixed-mode resin). The new method successfully identified the total number of individual HCPs in both samples and quantified the abundance changes in the remaining HCPs in the polish purification sample.
Collapse
Affiliation(s)
| | | | - Ying Chen
- Thermo Fisher Scientific, Bedford, MA 01730, USA
| | - A I De Leon
- Thermo Fisher Scientific, Bedford, MA 01730, USA
| | - Min Du
- Thermo Fisher Scientific, Lexington, MA 02421, USA
| |
Collapse
|
4
|
Lavoie J, Fan J, Pourdeyhimi B, Boi C, Carbonell RG. Advances in high-throughput, high-capacity nonwoven membranes for chromatography in downstream processing: A review. Biotechnol Bioeng 2024; 121:2300-2317. [PMID: 37256765 DOI: 10.1002/bit.28457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Nonwoven membranes are highly engineered fibrous materials that can be manufactured on a large scale from a wide range of different polymers, and their surfaces can be modified using a large variety of different chemistries and ligands. The fiber diameters, surface areas, pore sizes, total porosities, and thicknesses of the nonwoven mats can be carefully controlled, providing many opportunities for creative approaches for the development of novel membranes with unique properties to meet the needs of the future of downstream processing. Fibrous membranes are already finding use in ultrafiltration, microfiltration, depth filtration, and, more recently, in membrane chromatography for product capture and impurity removal. This article summarizes the various methods of manufacturing nonwoven fabrics, and the many methods available for the modification of the fiber surfaces. It also reviews recent studies focused on the use of nonwoven fabric devices in membrane chromatography and provides some perspectives on the challenges that need to be overcome to increase binding capacities, decrease residence times, and reduce pressure drops so that eventually they can replace resin column chromatography in downstream process operations.
Collapse
Affiliation(s)
- Joseph Lavoie
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
| | - Jinxin Fan
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
| | - Behnam Pourdeyhimi
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- Nonwovens Institute, NC State University, Raleigh, North Carolina, USA
| | - Cristiana Boi
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Ruben G Carbonell
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- National Institute for Innovation for Manufacturing Biopharmaceuticals (NIIMBL), University of Delaware, Newark, Delaware, USA
| |
Collapse
|
5
|
Zhang S, Xiao H, Li N. Analysis of Host Cell Proteins in AAV Products with ProteoMiner Protein Enrichment Technology. Anal Chem 2024; 96:1890-1897. [PMID: 38262068 DOI: 10.1021/acs.analchem.3c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Despite substantial efforts to detect host cell proteins (HCPs) in antibody drugs, information regarding HCPs in gene therapy products remains limited and has not been widely integrated into the host cell engineering or purification processes. Most methods that have successfully detected HCPs in antibody drugs are not applicable to gene therapy products, except for the ProteoMiner enrichment method. Here, we demonstrate that ProteoMiner beads effectively enrich HCPs in adeno-associated virus (AAV) products and simultaneously remove the detergent Pluronic F-68 without a loss of low-abundance HCPs. Following optimization of this technique, there was up to a 34-fold increase in the enrichment of HCPs compared to direct digestion. Moreover, the detection limit was significantly lowered with the ability to detect HCPs at levels as low as 0.1 ng/mL after ProteoMiner treatment. This approach holds promise in AAV HCP analysis and may be adaptable to other gene therapy products. The findings from this study provide valuable insights into HCPs in AAV products and may facilitate process development and host cell line optimization. The high sensitivity of this approach also facilitates detection of critical low-abundance HCPs, thereby contributing to risk assessment of their impact on the safety and quality of the AAV-based gene therapy products.
Collapse
Affiliation(s)
- Sisi Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Hui Xiao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| |
Collapse
|
6
|
Anderson SM, Seto E, Chau D, Lee B, Vail A, Ding S, Voloshin A, Nagel M. Fiber chromatographic enabled process intensification increases monoclonal antibody product yield. Biotechnol Bioeng 2024; 121:757-770. [PMID: 37902763 DOI: 10.1002/bit.28584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
The most straightforward method to increase monoclonal antibody (mAb) product yield is to complete the purification process in less steps. Here, three different fiber chromatographic devices were implemented using a holistic approach to intensify the mAb purification process and increase yield. Fiber protein A (proA) chromatography was first investigated, but traditional depth filtration was not sufficient in reducing the contaminant load as the fiber proA device prematurely fouled. Further experimentation revealed that chromatin aggregates were the most likely reason for the fiber fouling. To reduce levels of chromatin aggregates, a chromatographic clarification device (CCD) was incorporated into the process, resulting in single-stage clarification of harvested cell culture fluid and reduction of DNA levels. The CCD clarified pool was then successfully processed through the fiber proA device, fully realizing the productivity gains that the fiber technology offers. After the proA and viral inactivation neutralization (VIN) hold step, the purification process was further intensified using a novel single-use fiber-based polishing anion exchange (AEX) material that is capable of binding both soluble and insoluble contaminants. The three-stage fiber chromatographic purification process was compared to a legacy five-step process of dual-stage depth filtration, bead-based proA chromatography, post-VIN depth filtration, and bead-based AEX chromatography. The overall yield from the five-step process was 60%, while the fiber chromatographic-enabled intensified process had an overall yield of 70%. The impurity clearance of DNA and host cell protein (HCP) for both processes were within the regulatory specification (<100 ppm HCP, <1 ppb DNA). For the harvest of a 2000 L cell culture, the intensified process is expected to increase productivity by 2.5-fold at clarification, 50-fold at the proA step, and 1.6-fold in polishing. Relative to the legacy process, the intensified process would reduce buffer use by 1088 L and decrease overall process product mass intensity by 12.6%.
Collapse
Affiliation(s)
- Sean M Anderson
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Elbert Seto
- Gilead, Protein Sciences, Foster City, California, USA
| | - David Chau
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Brian Lee
- Gilead, Protein Sciences, Foster City, California, USA
| | - Andrew Vail
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Sheng Ding
- Gilead, Protein Sciences, Foster City, California, USA
| | - Alexei Voloshin
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Mark Nagel
- Gilead, Protein Sciences, Foster City, California, USA
| |
Collapse
|
7
|
Zhao Y, Li H, Fan Z, Wang T. Effect of Host Cell Protein on Chinese Hamster Ovary Recombinant Protein Production and its Removal Strategies: A Mini Review. Curr Pharm Biotechnol 2024; 25:665-675. [PMID: 37594091 DOI: 10.2174/1389201024666230818112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Chinese hamster ovary cells are the main expression system for recombinant therapeutic proteins. During the production of these proteins, certain host cell proteins are secreted, broken down, and released by host cells in the culture along with the proteins of interest. These host cell proteins are often difficult to remove during the downstream purification process, and thus affect the quality, safety, and effectiveness of recombinant protein biopharmaceutical products and increase the production cost of recombinant therapeutic proteins. Therefore, host cell protein production must be reduced as much as possible during the production process and eliminated during purification. This article reviews the harm caused by host cell proteins in the production of recombinant protein drugs using Chinese hamster ovary cell, factors affecting host cell proteins, the monitoring and identification of these proteins, and methods to reduce their type and quantity in the final product.
Collapse
Affiliation(s)
- Yaru Zhao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - He Li
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - Zhenlin Fan
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
9
|
Herman CE, Min L, Choe LH, Maurer RW, Xu X, Ghose S, Lee KH, Lenhoff AM. Behavior of host-cell-protein-rich aggregates in antibody capture and polishing chromatography. J Chromatogr A 2023; 1702:464081. [PMID: 37244165 PMCID: PMC10299761 DOI: 10.1016/j.chroma.2023.464081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Recent work has shown that aggregates in monoclonal antibody (mAb) solutions may be made up not just of mAb oligomers but can also harbor hundreds of host-cell proteins (HCPs), suggesting that aggregate persistence through downstream purification operations may be related to HCP clearance. We have examined this in a primary analysis of aggregate persistence through processing steps that are typically implemented for HCP reduction, demonstrating that the phenomenon is relevant to depth filtration, protein A chromatography and flow-through anion-exchange (AEX) polishing. Confocal laser scanning microscopy observations show that aggregates compete with the mAb to adsorb specifically in protein A chromatography and that this competitive interaction is integral to the efficacy of protein A washes. Column chromatography reveals that the protein A elution tail can have a relatively high concentration of aggregates, which corroborates analogous observations from recent HCP studies. Similar measurements in flow-through AEX chromatography show that relatively large aggregates that harbor HCPs and that persist into the protein A eluate can be retained to an extent that appears to depend primarily on the resin surface chemistry. The total aggregate mass fraction of both protein A eluate pools (∼ 2.4 - 3.6%) and AEX flow-through fractions (∼ 1.5 - 3.2%) correlates generally with HCP concentrations measured using enzyme-linked immunosorbent assay (ELISA) as well as the number of HCPs that may be identified in proteomic analysis. This suggests that quantification of the aggregate mass fraction may serve as a convenient albeit imperfect surrogate for informing early process development decisions regarding HCP clearance strategies.
Collapse
Affiliation(s)
- Chase E Herman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ronald W Maurer
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Xuankuo Xu
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Sanchayita Ghose
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
10
|
Beaumal C, Beck A, Hernandez-Alba O, Carapito C. Advanced mass spectrometry workflows for accurate quantification of trace-level host cell proteins in drug products: Benefits of FAIMS separation and gas-phase fractionation DIA. Proteomics 2023; 23:e2300172. [PMID: 37148167 DOI: 10.1002/pmic.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Therapeutic monoclonal antibodies (mAb) production relies on multiple purification steps before release as a drug product (DP). A few host cell proteins (HCPs) may co-purify with the mAb. Their monitoring is crucial due to the considerable risk they represent for mAb stability, integrity, and efficacy and their potential immunogenicity. Enzyme-linked immunosorbent assays (ELISA) commonly used for global HCP monitoring present limitations in terms of identification and quantification of individual HCPs. Therefore, liquid chromatography tandem mass spectrometry (LC-MS/MS) has emerged as a promising alternative. Challenging DP samples show an extreme dynamic range requiring high performing methods to detect and reliably quantify trace-level HCPs. Here, we investigated the benefits of adding high-field asymmetric ion mobility spectrometry (FAIMS) separation and gas phase fractionation (GPF) prior to data independent acquisition (DIA). FAIMS LC-MS/MS analysis allowed the identification of 221 HCPs among which 158 were reliably quantified for a global amount of 880 ng/mg of NIST mAb Reference Material. Our methods have also been successfully applied to two FDA/EMA approved DPs and allowed digging deeper into the HCP landscape with the identification and quantification of a few tens of HCPs with sensitivity down to the sub-ng/mg of mAb level.
Collapse
Affiliation(s)
- Corentin Beaumal
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Alain Beck
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| |
Collapse
|
11
|
Smith J, Strasser L, Guapo F, Milian SG, Snyder RO, Bones J. SP3-based host cell protein monitoring in AAV-based gene therapy products using LC-MS/MS. Eur J Pharm Biopharm 2023:S0939-6411(23)00172-8. [PMID: 37419424 DOI: 10.1016/j.ejpb.2023.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Residual host cell proteins (HCPs) represent a critical quality attribute of biotherapeutic drug products. Workflows enabling reliable HCP detection in monoclonal antibodies and recombinant proteins have been developed, which facilitated process optimization to improve product stability and safety and allowed setting of acceptance limits for HCP content. However, the detection of HCPs in gene therapy products such as adeno-associated viral (AAV) vectors has been limited by methods and their reagents. Here, the use of SP3 sample preparation followed by liquid chromatography-mass spectrometry (LC-MS) analysis for HCP profiling in various AAV samples is reported. Suitability of the workflow is demonstrated and provided data constitutes an important reference for future work aiming towards a knowledge-driven improvement of manufacturing conditions and characterization of AAV vector products.
Collapse
Affiliation(s)
- Josh Smith
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Lisa Strasser
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Felipe Guapo
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Steven G Milian
- Patheon Viral Vector Services, 13859 Progress Blvd., Alachua, 32615, Florida, US
| | - Richard O Snyder
- Patheon Viral Vector Services, 13859 Progress Blvd., Alachua, 32615, Florida, US
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
12
|
Herman CE, Min L, Choe LH, Maurer RW, Xu X, Ghose S, Lee KH, Lenhoff AM. Analytical characterization of host-cell-protein-rich aggregates in monoclonal antibody solutions. Biotechnol Prog 2023; 39:e3343. [PMID: 37020359 DOI: 10.1002/btpr.3343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
Host-cell proteins (HCPs) and high molecular weight (HMW) species have historically been treated as independent classes of impurities in the downstream processing of monoclonal antibodies (mAbs), but recent indications suggest that they may be partially linked. We have explored this connection with a shotgun proteomic analysis of HMW impurities that were isolated from harvest cell culture fluid (HCCF) and protein A eluate using size-exclusion chromatography (SEC). As part of the proteomic analysis, a cross-digest study was performed in which samples were analyzed using both the standard and native digest techniques to enable a fair comparison between bioprocess pools. This comparison reveals that the HCP profiles of HCCF and protein A eluate overlap substantially more than previous work has suggested, because hundreds of HCPs are conserved in aggregates that may be up to ~50 nm in hydrodynamic radius and that persist through the protein A capture step. Quantitative SWATH proteomics suggests that the majority of the protein A eluate's HCP mass is found in such aggregates, and this is corroborated by ELISA measurements on SEC fractions. The SWATH data also show that intra-aggregate concentrations of individual HCPs are positively correlated between aggregates that were isolated from HCCF and protein A eluate, and species that have generally been considered difficult to remove tend to be more concentrated than their counterparts. These observations support prior hypotheses regarding aggregate-mediated HCP persistence through protein A chromatography and highlight the importance of this persistence mechanism.
Collapse
Affiliation(s)
- Chase E Herman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Ronald W Maurer
- Biologics Process Development, Bristol Myers Squibb, Massachusetts, 01434, Devens, USA
| | - Xuankuo Xu
- Biologics Process Development, Bristol Myers Squibb, Massachusetts, 01434, Devens, USA
| | - Sanchayita Ghose
- Biologics Process Development, Bristol Myers Squibb, Massachusetts, 01434, Devens, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| |
Collapse
|
13
|
Parau M, Pullen J, Bracewell DG. Depth filter material process interaction in the harvest of mammalian cells. Biotechnol Prog 2023; 39:e3329. [PMID: 36775837 PMCID: PMC10909467 DOI: 10.1002/btpr.3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Upstream advances have led to increased mAb titers above 5 g/L in 14-day fed-batch cultures. This is accompanied by higher cell densities and process-related impurities such as DNA and Host Cell Protein (HCP), which have caused challenges for downstream operations. Depth filtration remains a popular choice for harvesting CHO cell culture, and there is interest in utilizing these to remove process-related impurities at the harvest stage. Operation of the harvest stage has also been shown to affect the performance of the Protein A chromatography step. In addition, manufacturers are looking to move away from natural materials such as cellulose and Diatomaceous Earth (DE) for better filter consistency and security of supply. Therefore, there is an increased need for further understanding and knowledge of depth filtration. This study investigates the effect of depth filter material and loading on the Protein A resin lifetime with an industrially relevant high cell density feed material (40 million cells/ml). It focuses on the retention of process-related impurities such as DNA and HCP through breakthrough studies and a novel confocal microscopy method for imaging foulant in-situ. An increase in loading of the primary-synthetic filter by a third, led to earlier DNA breakthrough in the secondary filter, with DNA concentration at a throughput of 50 L/m2 being more than double. Confocal imaging of the depth filters showed that the foulant was pushed forward into the filter structure with higher loading. The additional two layers in the primary-synthetic filter led to better pressure profiles in both primary and secondary filters but did not help to retain HCP or DNA. Reduced filtrate clarity, as measured by OD600, was 1.6 fold lower in the final filtrate where a synthetic filter train was used. This was also associated with precipitation in the Protein A column feed. Confocal imaging of resin after 100 cycles showed that DNA build-up around the outside of the bead was associated with synthetic filter trains, leading to potential mass transfer problems.
Collapse
Affiliation(s)
- Maria Parau
- Department of Biochemical EngineeringUniversity College LondonLondonUK
| | - James Pullen
- Research and DevelopmentFUJIFILM Diosynth Biotechnologies (FDB)BillinghamUK
| | | |
Collapse
|
14
|
Liu F, Ren W, Liu H, Liu H, Wang S, Zhang D, Sun D, Zhang F, Shao Z, Feng J, Yan M, Yang L, Wang Z, Zhang J, Wang Y. Universal protocol and standard-spiking strategy for profiling of host cell proteins in therapeutic growth hormone. Anal Biochem 2023; 670:115136. [PMID: 37028780 DOI: 10.1016/j.ab.2023.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Liquid chromatography coupled to mass spectrometry (LC-MS) is widely used for host cell proteins (HCP) identification in antibody drug development because of its sensitivity, selectivity, and adaptability. However, LC-MS based identification of HCP in biotherapeutics produced from the prokaryotic Escherichia coli-derived growth hormone (GH) has rarely been reported. Herein, we developed a universal and powerful workflow by combining optimized sample preparation with one-dimension ultra-high performance LC-MS based shotgun proteomics to support HCP profiling in GH samples from downstream pools and the final product, which would be beneficial to direct the purification process development and compare the difference of impurity of different products for guiding the development of the biosimilar. A standard-spiking strategy was also developed to increase the depth of HCP identification. Spiking with standards enables additional identification of HCP species, which is promising for trace-level HCP analysis. Our universal and standard-spiking protocols would open an avenue for profiling HCP in biotherapeutics derived from prokaryotic host cells.
Collapse
Affiliation(s)
- Feng Liu
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Weicheng Ren
- School of Life Science, Jilin University, Changchun, 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, China
| | - Hailong Liu
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Hao Liu
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Shuyue Wang
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Di Zhang
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Dandan Sun
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Feifei Zhang
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Zhengkang Shao
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Jia Feng
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Menghan Yan
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Lan Yang
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Zhiwei Wang
- GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China
| | - Jinliang Zhang
- School of Life Science, Jilin University, Changchun, 130012, China; GeneScience Pharmaceuticals Co, Ltd, Changchun, 130012, China.
| | - Yingwu Wang
- School of Life Science, Jilin University, Changchun, 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, China.
| |
Collapse
|
15
|
Oh YH, Becker ML, Mendola KM, Choe LH, Min L, Lee KH, Yigzaw Y, Seay A, Bill J, Li X, Roush DJ, Cramer SM, Menegatti S, Lenhoff AM. Characterization and implications of host-cell protein aggregates in biopharmaceutical processing. Biotechnol Bioeng 2023; 120:1068-1080. [PMID: 36585356 DOI: 10.1002/bit.28325] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.
Collapse
Affiliation(s)
- Young Hoon Oh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Matthew L Becker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kerri M Mendola
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yinges Yigzaw
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Alexander Seay
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Jerome Bill
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David J Roush
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
16
|
Zhang S, Zhao B, Adaniya S, Xiao H, Li N. Ultrasensitive Quantification Method for Understanding Biologically Relevant Concentrations of Host Cell Proteins in Therapeutics. Anal Chem 2023; 95:6002-6008. [PMID: 36977129 DOI: 10.1021/acs.analchem.3c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Certain host cell proteins (HCPs) in biotherapeutic drugs may be detrimental to drug product quality even when they are present at the subppm level. Therefore, an analytical method that can reliably quantify trace amounts of HCPs is desirable. This study demonstrates a novel strategy to quantify HCPs present at subppm levels with ProteoMiner enrichment coupled with limited digestion followed by targeted analysis with nano-liquid chromatography-parallel reaction monitoring. The method can achieve LLOQ values as low as 0.06 ppm, with an accuracy of 85%-111% of the theoretical value, and inter-run and intrarun precision within 12% and 25%, respectively. The approach was applied to the quantification of five high-risk HCPs in drug products. The results indicated that 2.5 ppm lysosomal acid lipase, 0.14 ppm liver carboxylesterase, 1.8 ppm palmitoyl-protein thioesterase 1, and 1 ppm cathepsin D affected the stability of drug products, whereas drug products could safely contain 1.5 ppm lipoprotein lipase, 0.1 ppm lysosomal acid lipase, or 0.3 ppm cathepsin D. In combination with lipase activity analysis, the accurate quantification of lipases/esterases in drug products enables better understanding and comparison of the enzymatic activity of polysorbate degradation from endogenous proteins.
Collapse
Affiliation(s)
- Sisi Zhang
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Bo Zhao
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Stephanie Adaniya
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Hui Xiao
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Ning Li
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| |
Collapse
|
17
|
Tuameh A, Harding SE, Darton NJ. Methods for addressing host cell protein impurities in biopharmaceutical product development. Biotechnol J 2023; 18:e2200115. [PMID: 36427352 DOI: 10.1002/biot.202200115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The high demand for monoclonal antibody (mAb) therapeutics in recent years has resulted in significant efforts to improve their costly manufacturing process. The high cost of manufacturing mAbs derives mainly from the purification process, which contributes to 50%-80% of the total manufacturing cost. One of the main challenges facing industry at the purification stage is the clearance of host cell proteins (HCPs) that are produced and often co-purified with the desired mAb product. One of the issues HCPs can cause is the degradation of the final mAb protein product. In this review, techniques are considered that can be used at different stages (upstream and downstream) of mAb manufacture to improve HCP clearance. In addition to established techniques, many new approaches for HCP removal are discussed that have the potential to replace current methods for improving HCP reduction and thereby the quality and stability of the final mAb product.
Collapse
Affiliation(s)
- Abdulrahman Tuameh
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Nicholas J Darton
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
18
|
Lu Y, Lin J, Bian T, Chen J, Liu D, Ma M, Gao Z, Chen J, Ju D, Wang X. Risk control of host cell proteins in one therapeutic antibody produced by concentrated fed-batch (CFB) mode. Eng Life Sci 2023; 23:e2200060. [PMID: 36874608 PMCID: PMC9978904 DOI: 10.1002/elsc.202200060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Multiple control strategies, including a downstream purification process with well-controlled parameters and a comprehensive release or characterization for intermediates or drug substances, were implemented to mitigate the potential risk of host cell proteins (HCPs) in one concentrated fed-batch (CFB) mode manufactured product. A host cell process specific enzyme-linked immunosorbent assay (ELISA) method was developed for the quantitation of HCPs. The method was fully validated and showed good performance including high antibody coverage. This was confirmed by 2D Gel-Western Blot analysis. Furthermore, a LC-MS/MS method with non-denaturing digestion and a long gradient chromatographic separation coupled with data dependent acquisition (DDA) on a Thermo/QE-HF-X mass spectrometer was developed as an orthogonal method to help identify the specific types of HCPs in this CFB product. Because of the high sensitivity, selectivity and adaptability of the new developed LC-MS/MS method, significantly more species of HCP contaminants were able to be identified. Even though high levels of HCPs were observed in the harvest bulk of this CFB product, the development of multiple processes and analytical control strategies may greatly mitigate potential risks and reduce HCPs contaminants to a very low level. No high-risk HCP was identified and the total amount of HCPs was very low in the CFB final product.
Collapse
Affiliation(s)
- Yiling Lu
- Department of Analytical ScienceFormulation & Quality Control, Genor Biopharma Co., Ltd.ShanghaiChina
| | - Jun Lin
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
- Department of Analytical ScienceFormulation & Quality Control, Genor Biopharma Co., Ltd.ShanghaiChina
| | - Tianze Bian
- Department of Analytical ScienceFormulation & Quality Control, Genor Biopharma Co., Ltd.ShanghaiChina
| | - Jin Chen
- Department of Analytical ScienceFormulation & Quality Control, Genor Biopharma Co., Ltd.ShanghaiChina
| | - Dan Liu
- Department of Analytical ScienceFormulation & Quality Control, Genor Biopharma Co., Ltd.ShanghaiChina
| | - Mingjun Ma
- Department of Analytical ScienceFormulation & Quality Control, Genor Biopharma Co., Ltd.ShanghaiChina
| | - Zhen Gao
- Department of Analytical ScienceFormulation & Quality Control, Genor Biopharma Co., Ltd.ShanghaiChina
| | - Jiemin Chen
- Department of Analytical ScienceFormulation & Quality Control, Genor Biopharma Co., Ltd.ShanghaiChina
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
| | - Xing Wang
- Array Bridge Inc.St. LouisMissouriUSA
| |
Collapse
|
19
|
O'Mara B, Singh NK, Menendez A, Tipton B, Vail A, Voloshin A, Buechler Y, Anderson SM. Single-stage chromatographic clarification of Chinese Hamster Ovary cell harvest reduces cost of protein production. Biotechnol Prog 2023; 39:e3323. [PMID: 36598038 DOI: 10.1002/btpr.3323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
A single-stage clarification was developed using a single-use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster Ovary (CHO) harvest cell culture fluid (HCCF). Clarification of a CHO HCCF is a complex and costly process, involving multiple stages of centrifugation and/or depth filtration to remove cells and debris and to reduce process-related impurities such as host cell protein (HCP), nucleic acids, and lipids. When using depth filtration, the filter train consists of multiple filters of varying ratios, layers, pore sizes, and adsorptive properties. The depth filters, in combination with a 0.2-micron membrane filter, clarify the HCCF based on size-exclusion, adsorptive, and charge-based mechanisms, and provide robust bioburden control. Each stage of the clarification process requires time, labor, and utilities, with product loss at each step. Here, use of the 3M™ Harvest RC Chromatographic Clarifier, a single-stage CCD, is identified as an alternative strategy to a three-stage filtration train. The CCD results in less overall filter area, less volume for flushing, and higher yield. Using bioprocess cost modeling, the single-stage clarification process was compared to a three-stage filtration process. By compressing the CHO HCCF clarification to a single chromatographic stage, the overall cost of the clarification process was reduced by 17%-30%, depending on bioreactor scale. The main drivers for the cost reduction were reduced total filtration area, labor, time, and utilities. The benefits of the single-stage harvest process extended throughout the downstream process, resulting in a 25% relative increase in cumulative yield with comparable impurity clearance.
Collapse
Affiliation(s)
- Brian O'Mara
- Process Development, Ambrx, Inc., La Jolla, California, USA
| | | | | | - Barbara Tipton
- Process Development, Ambrx, Inc., La Jolla, California, USA
| | - Andrew Vail
- Separation and Purification Sciences, 3M, St. Paul, Minnesota, USA
| | - Alexei Voloshin
- Separation and Purification Sciences, 3M, St. Paul, Minnesota, USA
| | - Ying Buechler
- Process Development, Ambrx, Inc., La Jolla, California, USA
| | - Sean M Anderson
- Separation and Purification Sciences, 3M, St. Paul, Minnesota, USA
| |
Collapse
|
20
|
Guo J, Kufer R, Li D, Wohlrab S, Greenwood-Goodwin M, Yang F. Technical advancement and practical considerations of LC-MS/MS-based methods for host cell protein identification and quantitation to support process development. MAbs 2023; 15:2213365. [PMID: 37218066 PMCID: PMC10208169 DOI: 10.1080/19420862.2023.2213365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Host cell proteins (HCPs) are process-related impurities derived from the manufacturing of recombinant biotherapeutics. Residual HCP in drug products, ranging from 1 to 100 ppm (ng HCP/mg product) or even below sub-ppm level, may affect product quality, stability, efficacy, or safety. Therefore, removal of HCPs to appropriate levels is critical for the bioprocess development of biotherapeutics. Liquid chromatography-mass spectrometry (LC-MS) analysis has become an important tool to identify, quantify, and monitor the clearance of individual HCPs. This review covers the technical advancement of sample preparation strategies, new LC-MS-based techniques, and data analysis approaches to robustly and sensitively measure HCPs while overcoming the high dynamic range analytical challenges. We also discuss our strategy for LC-MS-based HCP workflows to enable fast support of process development throughout the product life cycle, and provide insights into developing specific analytical strategies leveraging LC-MS tools to control HCPs in process and mitigate their potential risks to drug quality, stability, and patient safety.
Collapse
Affiliation(s)
- Jia Guo
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Regina Kufer
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Delia Li
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Stefanie Wohlrab
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| |
Collapse
|
21
|
Wang Q, Wang T, Wu WW, Lin CY, Yang S, Yang G, Jankowska E, Hu Y, Shen RF, Betenbaugh MJ, Cipollo JF. Comprehensive N- and O-Glycoproteomic Analysis of Multiple Chinese Hamster Ovary Host Cell Lines. J Proteome Res 2022; 21:2341-2355. [PMID: 36129246 DOI: 10.1021/acs.jproteome.2c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycoproteomic analysis of three Chinese hamster ovary (CHO) suspension host cell lines (CHO-K1, CHO-S, and CHO-Pro5) commonly utilized in biopharmaceutical settings for recombinant protein production is reported. Intracellular and secreted glycoproteins were examined. We utilized an immobilization and chemoenzymatic strategy in our analysis. Glycoproteins or glycopeptides were first immobilized through reductive amination, and the sialyl moieties were amidated for protection. The desired N- or O-glycans and glycopeptides were released from the immobilization resin by enzymatic or chemical digestion. Glycopeptides were studied by Orbitrap Liquid chromatography-mass spectrometry (LC/MS), and the released glycans were analyzed by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Differences were detected in the relative abundances of N- and O-glycopeptide types, their resident and released glycans, and their glycoprotein complexity. Ontogeny analysis revealed key differences in features, such as general metabolic and biosynthetic pathways, including glycosylation systems, as well as distributions in cellular compartments. Host cell lines and subfraction differences were observed in both N- and O-glycan and glycoprotein pools. Differences were observed in sialyl and fucosyl glycan distributions. Key differences were also observed among glycoproteins that are problematic contaminants in recombinant antibody production. The differences revealed in this study should inform the choice of cell lines best suited for a particular bioproduction application.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Chang-Yi Lin
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ganglong Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ewa Jankowska
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yifeng Hu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
22
|
Zhang S, Xiao H, Li N. Ultrasensitive method for profiling host cell proteins by coupling limited digestion to ProteoMiner technology. Anal Biochem 2022; 657:114901. [PMID: 36130653 DOI: 10.1016/j.ab.2022.114901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Host cell proteins (HCPs) are process-related impurities that remain in therapeutic protein -at trace levels. HCPs must be closely monitored because they may be detrimental to drug product quality. Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for detecting individual HCPs; however, HCP-derived peptides can be four to ten orders of magnitude less abundant than therapeutic protein-derived peptides in drug products, thus posing a major challenge in LC-MS detection. We previously demonstrated that low abundant HCPs can be enriched several hundreds fold through ProteoMiner. This study further improved the degree of enrichment by coupling limited digestion to ProteoMiner technology (PMLD). HCPs with low abundance were enriched 7694-fold, thus enabling detection of HCPs at concentrations as low as 0.002 ppm. A total of 850 HCPs were detected with high confidence from a NIST monoclonal antibody preparation, a number 40% higher than previously reported.
Collapse
Affiliation(s)
- Sisi Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591-6706, United States
| | - Hui Xiao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591-6706, United States.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591-6706, United States
| |
Collapse
|
23
|
Two major mechanisms contributing to copurification of CHO host cell proteins and strategies to minimize their negative impact. Protein Expr Purif 2022; 197:106113. [DOI: 10.1016/j.pep.2022.106113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
|
24
|
Process- and Product-Related Foulants in Virus Filtration. Bioengineering (Basel) 2022; 9:bioengineering9040155. [PMID: 35447715 PMCID: PMC9030149 DOI: 10.3390/bioengineering9040155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Regulatory authorities place stringent guidelines on the removal of contaminants during the manufacture of biopharmaceutical products. Monoclonal antibodies, Fc-fusion proteins, and other mammalian cell-derived biotherapeutics are heterogeneous molecules that are validated based on the production process and not on molecular homogeneity. Validation of clearance of potential contamination by viruses is a major challenge during the downstream purification of these therapeutics. Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge. This review shows how components generated during cell culture, contaminants, and product variants can affect virus filtration of mammalian cell-derived biologics. Cell culture-derived foulants include host cell proteins, proteases, and endotoxins. We also provide mitigation measures for each potential foulant.
Collapse
|
25
|
Parau M, Johnson TF, Pullen J, Bracewell DG. Analysis of fouling and breakthrough of process related impurities during depth filtration using confocal microscopy. Biotechnol Prog 2022; 38:e3233. [PMID: 35037432 PMCID: PMC9286597 DOI: 10.1002/btpr.3233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
Abstract
Titer improvement has driven process intensification in mAb manufacture. However, this has come with the drawback of high cell densities and associated process related impurities such as cell debris, host cell protein (HCP), and DNA. This affects the capacity of depth filters and can lead to carryover of impurities to protein A chromatography leading to early resin fouling. New depth filter materials provide the opportunity to remove more process related impurities at this early stage in the process. Hence, there is a need to understand the mechanism of impurity removal within these filters. In this work, the secondary depth filter Millistak+ X0HC (cellulose and diatomaceous earth) is compared with the X0SP (synthetic), by examining the breakthrough of DNA and HCP. Additionally, a novel method was developed to image the location of key impurities within the depth filter structure under a confocal microscope. Flux, tested at 75, 100, and 250 LMH was found to affect the maximal throughput based on the max pressure of 30 psi, but no significant changes were seen in the HCP and DNA breakthrough. However, a drop in cell culture viability, from 87% to 37%, lead to the DNA breakthrough at 10% decreasing from 81 to 55 L/m2 for X0HC and from 105 to 47 L/m2 for X0SP. The HCP breakthrough was not affected by cell culture viability or filter type. The X0SP filter has a 30%-50% higher max throughput depending on viability, which can be explained by the confocal imaging where the debris and DNA are distributed differently in the layers of the filter pods, with more of the second tighter layer being utilized in the X0SP.
Collapse
Affiliation(s)
- Maria Parau
- Department of Biochemical EngineeringUniversity College LondonLondonUK
| | - Thomas F. Johnson
- Department of Biochemical EngineeringUniversity College LondonLondonUK
| | | | | |
Collapse
|
26
|
Strasser L, Oliviero G, Jakes C, Zaborowska I, Floris P, Ribeiro da Silva M, Füssl F, Carillo S, Bones J. Detection and quantitation of host cell proteins in monoclonal antibody drug products using automated sample preparation and data-independent acquisition LC-MS/MS. J Pharm Anal 2022; 11:726-731. [PMID: 35028177 PMCID: PMC8740166 DOI: 10.1016/j.jpha.2021.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Ensuring the removal of host cell proteins (HCPs) during downstream processing of recombinant proteins such as monoclonal antibodies (mAbs) remains a challenge. Since residual HCPs might affect product stability or safety, constant monitoring is required to demonstrate their removal to be below the regulatory accepted level of 100 ng/mg. The current standard analytical approach for this procedure is based on ELISA; however, this approach only measures the overall HCP content. Therefore, the use of orthogonal methods, such as liquid chromatography-mass spectrometry (LC-MS), has been established, as it facilitates the quantitation of total HCPs as well as the identification and quantitation of the individual HCPs present. In the present study, a workflow for HCP detection and quantitation using an automated magnetic bead-based sample preparation, in combination with a data-independent acquisition (DIA) LC-MS analysis, was established. Employing the same instrumental setup commonly used for peptide mapping analysis of mAbs allows for its quick and easy implementation into pre-existing workflows, avoiding the need for dedicated instrumentation or personnel. Thereby, quantitation of HCPs over a broad dynamic range was enabled to allow monitoring of problematic HCPs or to track changes upon altered bioprocessing conditions. Reproducible HCP analysis using automated, magnetic bead-based sample preparation. Quick and easy implementation into pre-existing LC-MS peptide mapping workflows. DIA-LC-MS/MS for comprehensive analysis of low abundant HCPs, contaminating peptides without additional sample pretreatment.
Collapse
Affiliation(s)
- Lisa Strasser
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Giorgio Oliviero
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Craig Jakes
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Izabela Zaborowska
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Patrick Floris
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Meire Ribeiro da Silva
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Florian Füssl
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Sara Carillo
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Jonathan Bones
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
27
|
Teeparuksapun K, Hedström M, Mattiasson B. A Sensitive Capacitive Biosensor for Protein a Detection Using Human IgG Immobilized on an Electrode Using Layer-by-Layer Applied Gold Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2021; 22:99. [PMID: 35009642 PMCID: PMC8747357 DOI: 10.3390/s22010099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
A capacitive biosensor for the detection of protein A was developed. Gold electrodes were fabricated by thermal evaporation and patterned by photoresist photolithography. A layer-by-layer (LbL) assembly of thiourea (TU) and HAuCl4 and chemical reduction was utilized to prepare a probe with a different number of layers of TU and gold nanoparticles (AuNPs). The LbL-modified electrodes were used for the immobilization of human IgG. The binding interaction between human IgG and protein A was detected as a decrease in capacitance signal, and that change was used to investigate the correlation between the height of the LbL probe and the sensitivity of the capacitive measurement. The results showed that the initial increase in length of the LbL probe can enhance the amount of immobilized human IgG, leading to a more sensitive assay. However, with thicker LbL layers, a reduction of the sensitivity of the measurement was registered. The performance of the developed system under optimum set-up showed a linearity in response from 1 × 10-16 to 1 × 10-13 M, with the limit detection of 9.1 × 10-17 M, which could be interesting for the detection of trace amounts of protein A from affinity isolation of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Kosin Teeparuksapun
- Science Program, Department of General Education, Faculty of Liberal Arts, Rajamangala University of Technology Srivijaya, Songkhla 90000, Thailand;
- Division of Biotechnology, Lund University, P.O. Box 124, 221 00 Lund, Sweden;
| | - Martin Hedström
- Division of Biotechnology, Lund University, P.O. Box 124, 221 00 Lund, Sweden;
| | - Bo Mattiasson
- Division of Biotechnology, Lund University, P.O. Box 124, 221 00 Lund, Sweden;
| |
Collapse
|
28
|
Glücklich N, Carle S, Buske J, Mäder K, Garidel P. Assessing the polysorbate degradation fingerprints and kinetics of lipases - how the activity of polysorbate degrading hydrolases is influenced by the assay and assay conditions. Eur J Pharm Sci 2021; 166:105980. [PMID: 34419573 DOI: 10.1016/j.ejps.2021.105980] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Two of the most widely used surfactants to stabilize biologicals against e.g. interfacial stresses are polysorbate 20 (PS20) and polysorbate 80 (PS80). In recent years, numerous cases of hydrolytic polysorbate (PS) degradation in liquid formulations of biopharmaceuticals have been observed. Concomitant with the degradation of PSs, formulated proteins become inherently instable and more susceptible to aggregation. Furthermore, poorly soluble fatty acids (FA) are released from the PSs, which might lead to FA precipitation and the formation of visible and subvisible particles. Therefore, possible particle inducing factors have to be monitored closely. The major root cause of hydrolytic PS degradation in biologicals is the presence of enzymatic active host cell proteins (HCP), like lipases and esterases, which are co-purified with the active pharmaceutical ingredient. Such contaminants can be detected via their hydrolytic activity, either using ester-based substrates or PS itself. However, each approach has its up- and downsides, which makes the comparison of the results from other publications difficult. It was therefore the aim of the present study to investigate the impact of lipase specificities on the assay readouts. This study evaluates three different surrogate (model) lipases with distinctively different degradation kinetics and substrate specificities using specific analytical methods. The analytical panel contains on one hand two lipase activity assays with ester-based substrates, either detecting the release of para-nitrophenol or 4-methylumbelliferone, and on the other hand two PS-based monitoring analyses (fluorescence micelle assay and reverse phase high performance liquid chromatography - charged aerosol detection), which detect hydrolytic "activity" directly in the target substrate. Thereby, strengths and weaknesses of each assay are discussed, and recommendations are made for the respective use cases. Our results show that the determined lipase activities vary not only from assay to assay, but also significantly for the lipase tested, thus showing a different degradation fingerprint in the RP-HPLC-CAD chromatogram. This demonstrates that a comprehensive monitoring approach is essential to assess potential HCP contaminations.
Collapse
Affiliation(s)
- Nils Glücklich
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Chemistry, Faculty of Physical and Theoretical Chemistry, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
29
|
Jakes C, Millán-Martín S, Carillo S, Scheffler K, Zaborowska I, Bones J. Tracking the Behavior of Monoclonal Antibody Product Quality Attributes Using a Multi-Attribute Method Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1998-2012. [PMID: 33513021 DOI: 10.1021/jasms.0c00432] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The multi-attribute method (MAM) is a liquid chromatography-mass spectrometry based method that is used to directly characterize and monitor many product quality attributes and impurities on biotherapeutics, most commonly at the peptide level. It utilizes high-resolution accurate mass spectral data which are analyzed in an automated fashion. MAM is a promising approach that is intended to replace or supplement several conventional assays with a single LC-MS analysis and can be implemented in a Current Good Manufacturing Practice environment. MAM provides accurate site-specific quantitation information on targeted attributes and the nontargeted new peak detection function allows to detect new peaks as impurities, modifications, or sequence variants when comparing to a reference sample. The high resolution MAM workflow was applied here for three independent case studies. First, to monitor the behavior of monoclonal antibody product quality attributes over the course of a 12-day cell culture experiment providing an insight into the behavior and dynamics of product attributes throughout the process. Second, the workflow was applied to test the purity and identity of a product through analysis of samples spiked with host cell proteins. Third, through the comparison of a drug product and a biosimilar with known sequence variants. The three case studies presented here, clearly demonstrate the robustness and accuracy of the MAM workflow that implies suitability for deployment in the regulated environment.
Collapse
Affiliation(s)
- Craig Jakes
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co., Dublin, A94 X099 Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Silvia Millán-Martín
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co., Dublin, A94 X099 Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co., Dublin, A94 X099 Ireland
| | - Kai Scheffler
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Izabela Zaborowska
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co., Dublin, A94 X099 Ireland
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co., Dublin, A94 X099 Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
30
|
Jones M, Palackal N, Wang F, Gaza-Bulseco G, Hurkmans K, Zhao Y, Chitikila C, Clavier S, Liu S, Menesale E, Schonenbach NS, Sharma S, Valax P, Waerner T, Zhang L, Connolly T. "High-risk" host cell proteins (HCPs): A multi-company collaborative view. Biotechnol Bioeng 2021; 118:2870-2885. [PMID: 33930190 DOI: 10.1002/bit.27808] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Host cell proteins (HCPs) are process-related impurities that may copurify with biopharmaceutical drug products. Within this class of impurities there are some that are more problematic. These problematic HCPs can be considered high-risk and can include those that are immunogenic, biologically active, or enzymatically active with the potential to degrade either product molecules or excipients used in formulation. Some have been shown to be difficult to remove by purification. Why should the biopharmaceutical industry worry about these high-risk HCPs? What approach could be taken to understand the origin of its copurification and address these high-risk HCPs? To answer these questions, the BioPhorum Development Group HCP Workstream initiated a collaboration among its 26-company team with the goal of industry alignment around high-risk HCPs. The information gathered through literature searches, company experiences, and surveys were used to compile a list of frequently seen problematic/high-risk HCPs. These high-risk HCPs were further classified based on their potential impact into different risk categories. A step-by-step recommendation is provided for establishing a comprehensive control strategy based on risk assessments for monitoring and/or eliminating the known impurity from the process that would be beneficial to the biopharmaceutical industry.
Collapse
Affiliation(s)
- Marisa Jones
- GlaxoSmithKline, CMC Analytical, Structure & Function Characterization, Collegeville, Pennsylvania, USA
| | - Nisha Palackal
- Regeneron Pharmaceuticals Inc., Protein Biochemistry, Tarrytown, New York, USA
| | - Fengqiang Wang
- Merck & Co. Inc., Analytical Research & Development, Kenilworth, New Jersey, USA
| | | | - Karen Hurkmans
- AbbVie Bioresearch Center, Protein Analytics, Worcester, Massachusetts, USA
| | - Yiwei Zhao
- Takeda Pharmaceuticals, Pharmaceutical science, Cambridge, Massachusetts, USA
| | - Carmelata Chitikila
- Janssen R&D LLC, BioTherapeutics Development and Supply, Analytical Development, Bioassay Methods Development, Malvern, Pennsylvania, USA
| | - Severine Clavier
- Sanofi R&D, BioAnalytics, Biologics Development, Vitry-sur-seine, France
| | - Suli Liu
- Biogen, Analytical Development, Cambridge, Massachusetts, USA
| | - Emily Menesale
- Biogen, Analytical Development, Cambridge, Massachusetts, USA
| | - Nicole S Schonenbach
- Pfizer, Downstream Process Development, Bioprocess R&D, Chesterfield, Missouri, USA
| | - Satish Sharma
- Bristol Meyers Squibb, Analytical Development, New York, New York, USA
| | - Pascal Valax
- Merck KGaA, Global Healthcare Operations, Development and Launch, Biotech Process Sciences, Merck BioDevelopment, Martillac, France
| | - Thomas Waerner
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Analytical Development, Biologicals, Biberach, Germany
| | - Lei Zhang
- Bristol Meyers Squibb, Analytical Development, New York, New York, USA
| | - Trish Connolly
- Development Group Phorum, BioPhorum, The Gridiron building, One Pancras Square, London, UK
| |
Collapse
|
31
|
Coagulation factor IX analysis in bioreactor cell culture supernatant predicts quality of the purified product. Commun Biol 2021; 4:390. [PMID: 33758337 PMCID: PMC7988164 DOI: 10.1038/s42003-021-01903-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Coagulation factor IX (FIX) is a complex post-translationally modified human serum glycoprotein and high-value biopharmaceutical. The quality of recombinant FIX (rFIX), especially complete γ-carboxylation, is critical for rFIX clinical efficacy. Bioreactor operating conditions can impact rFIX production and post-translational modifications (PTMs). With the goal of optimizing rFIX production, we developed a suite of Data Independent Acquisition Mass Spectrometry (DIA-MS) proteomics methods and used these to investigate rFIX yield, γ-carboxylation, other PTMs, and host cell proteins during bioreactor culture and after purification. We detail the dynamics of site-specific PTM occupancy and structure on rFIX during production, which correlated with the efficiency of purification and the quality of the purified product. We identified new PTMs in rFIX near the GLA domain which could impact rFIX GLA-dependent purification and function. Our workflows are applicable to other biologics and expression systems, and should aid in the optimization and quality control of upstream and downstream bioprocesses.
Collapse
|
32
|
Nie S, Greer T, O'Brien Johnson R, Zheng X, Torri A, Li N. Simple and Sensitive Method for Deep Profiling of Host Cell Proteins in Therapeutic Antibodies by Combining Ultra-Low Trypsin Concentration Digestion, Long Chromatographic Gradients, and BoxCar Mass Spectrometry Acquisition. Anal Chem 2021; 93:4383-4390. [PMID: 33656852 DOI: 10.1021/acs.analchem.0c03931] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for the analysis of host cell proteins (HCP) during antibody drug process development due to its sensitivity, selectivity, and adaptability. However, the enormous dynamic range between the therapeutic antibody and accompanying HCPs poses a significant challenge for LC-MS based detection of these low abundance impurities. To address this challenge, enrichment of HCPs via immunoaffinity, protein A, 2D-LC, or other strategies is typically performed. However, these enrichments are time-consuming and sometimes require a large quantity of sample. Here, we report a simple and sensitive strategy to analyze HCPs in therapeutic antibody samples without cumbersome enrichment by combining an ultra-low trypsin concentration during digestion under nondenaturing conditions, a long chromatographic gradient, and BoxCar acquisition (ULTLB) on a quadrupole-Orbitrap mass spectrometer. Application of this strategy to the NIST monoclonal antibody standard (NISTmAb) resulted in the identification of 453 mouse HCPs, which is a significant increase in the number of identified HCPs without enrichment compared to previous reports. Known amounts of HCPs were spiked into the purified antibody drug substance, demonstrating that the method sensitivity is as low as 0.5 ppm. Thus, the ULTLB method represents a sensitive and simple platform for deep profiling of HCPs in antibodies.
Collapse
Affiliation(s)
- Song Nie
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Tyler Greer
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Reid O'Brien Johnson
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaojing Zheng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Albert Torri
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
33
|
Lavoie RA, Chu W, Lavoie JH, Hetzler Z, Williams TI, Carbonell R, Menegatti S. Removal of host cell proteins from cell culture fluids by weak partitioning chromatography using peptide-based adsorbents. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Kumar R, Shah RL, Ahmad S, Rathore AS. Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for analysis of host cell proteins in monoclonal antibody producing CHO cell line. Electrophoresis 2021; 42:735-741. [PMID: 33348443 DOI: 10.1002/elps.202000252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 11/05/2022]
Abstract
Host cell proteins (HCPs) are widely regarded as a critical quality attribute for a biotherapeutic product. Bottom up MS is the present gold standard for HCP analysis but suffers from incomplete protein identification due to complex nature of the HCP mixture and limited separation efficiency of the preceding LC-based systems. In this paper, we present for the first time an application involving use of LC-CE-MS/MS platform for analysis of HCPs. It has been demonstrated that the proposed platform has been able to successfully identify 397 HCPs from the supernatants of recombinant Chinese hamster ovary cells, twice and thrice the number of proteins identified by the state-of-the-art LC-MS/MS (189 HCPs) and CE-MS/MS (128 HCPs) analyses, respectively. Of these, 225 HCPs were unique to the LC-CE-MS/MS approach and were not identified by either LC-MS/MS or CE-MS/MS. It is observed that the LC-CE-MS/MS platform combines the benefits of LC-MS/MS and CE-MS/MS techniques and identifies peptides in a wider range of size, pI, and hydrophobicity. Additionally, LC-CE-MS/MS also identified more HCPs associated with cellular components, molecular functions, biological processes, peptidases, and secretory proteins. The proposed approach would thus be a useful addition in HCP analysis and secretome studies of mAb-producing Chinese hamster ovary cells.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Rohan L Shah
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
35
|
Khanal O, Lenhoff AM. Developments and opportunities in continuous biopharmaceutical manufacturing. MAbs 2021; 13:1903664. [PMID: 33843449 PMCID: PMC8043180 DOI: 10.1080/19420862.2021.1903664] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Today's biologics manufacturing practices incur high costs to the drug makers, which can contribute to high prices for patients. Timely investment in the development and implementation of continuous biomanufacturing can increase the production of consistent-quality drugs at a lower cost and a faster pace, to meet growing demand. Efficient use of equipment, manufacturing footprint, and labor also offer the potential to improve drug accessibility. Although technological efforts enabling continuous biomanufacturing have commenced, challenges remain in the integration, monitoring, and control of traditionally segmented unit operations. Here, we discuss recent developments supporting the implementation of continuous biomanufacturing, along with their benefits.
Collapse
Affiliation(s)
- Ohnmar Khanal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
36
|
Holstein M, Jang D, Urrea C, Botta LS, Grimm W, Ghose S, Li ZJ. Control of leached beta-glucan levels from depth filters by an improved depth filtration flush strategy. Biotechnol Prog 2020; 37:e3086. [PMID: 33016571 DOI: 10.1002/btpr.3086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022]
Abstract
Beta-glucans are polysaccharides of D-glucose monomers linked by (1-3) beta-glycosidic bonds, are found to have a potential immunogenicity risk in biotherapeutic products, and are labeled as process contaminants. A common source of beta-glucans is from the cellulose found in traditional depth filter media. Typically, beta-glucan impurities that leach into the product from the primary clarification depth filters can be removed by the subsequent bind-and-elute affinity chromatography capture step. Beta-glucans can also be removed by a bind-and-elute cation exchange chromatography step, which is useful for removing beta-glucans introduced by a post-Protein A depth filtration step. However, the increasing prevalence of flowthrough polishing chromatography poses a challenge for beta-glucan removal due to the lack of any bind-and-elute chromatography steps after the post-Protein A depth filter. In this work, a depth filter flush strategy was developed to control beta-glucan leaching into the product pool. Different loading conditions for the depth filtration and subsequent chromatography steps were evaluated to determine the robustness of the optimized flush strategy. Carry through runs demonstrated greater than two-fold reduction in beta-glucan levels using the optimized wash as compared to standard filter flush conditions.
Collapse
Affiliation(s)
- Melissa Holstein
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts, USA
| | - Dongyoun Jang
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts, USA
| | - Christine Urrea
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts, USA
| | - Lakshmi Sirisha Botta
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts, USA
| | - William Grimm
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts, USA
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts, USA
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts, USA
| |
Collapse
|
37
|
Allmendinger A, Lebouc V, Bonati L, Woehr A, Kishore RSK, Abstiens K. Glass Leachables as a Nucleation Factor for Free Fatty Acid Particle Formation in Biopharmaceutical Formulations. J Pharm Sci 2020; 110:785-795. [PMID: 33035535 DOI: 10.1016/j.xphs.2020.09.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
Surfactants are essential components in protein formulations protecting them against interfacial stress. One of the current industry-wide challenges is enzymatic degradation of parenteral surfactants such as polysorbate 20 (PS20) and polysorbate 80, which leads to the accumulation of free fatty acids (FFAs) potentially forming visible particles over the drug product shelf-life. While the concentration of FFAs can be quantified, the time point of particle formation remains unpredictable. In this work, we studied the influence of glass leachables as nucleation factors for FFA particle formation. We demonstrate the feasibility of nucleation of FFA particles in the presence of inorganic salts like NaAlO2 and CaCl2 simulating relevant glass leachables. We further demonstrate FFA particle formation depending on relevant aluminum concentrations. FFA particle formation was subsequently confirmed with lauric/myristic acid in the presence of different quantities and compositions of glass leachables obtained by several sterilization cycles using different types of glass vials. We further verified the formation of particles in aged protein formulation containing degraded PS20 through the spiking of glass leachables. Particles were characterized as a complex of glass leachables, such as aluminum and FFAs. Based on our findings, we propose a likely pathway for FFA particle formation that considers specific nucleation factors.
Collapse
Affiliation(s)
- Andrea Allmendinger
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel.
| | - Vanessa Lebouc
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Lucia Bonati
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Anne Woehr
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Ravuri S K Kishore
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Kathrin Abstiens
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| |
Collapse
|
38
|
Pythoud N, Bons J, Mijola G, Beck A, Cianférani S, Carapito C. Optimized Sample Preparation and Data Processing of Data-Independent Acquisition Methods for the Robust Quantification of Trace-Level Host Cell Protein Impurities in Antibody Drug Products. J Proteome Res 2020; 20:923-931. [PMID: 33016074 DOI: 10.1021/acs.jproteome.0c00664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Host cell proteins (HCPs) are a major class of bioprocess-related impurities generated by the host organism and are generally present at low levels in purified biopharmaceutical products. The monitoring of these impurities is identified as an important critical quality attribute of monoclonal antibody (mAb) formulations not only due to the potential risk for the product stability and efficacy but also concerns linked to the immunogenicity of some of them. While overall HCP levels are usually monitored by enzyme-linked immunosorbent assay (ELISA), mass spectrometry (MS)-based approaches have been emerging as powerful and promising alternatives providing qualitative and quantitative information. However, a major challenge for liquid chromatography (LC)-MS-based methods is to deal with the wide dynamic range of drug products and the extreme sensitivity required to detect trace-level HCPs. In this study, we developed powerful and reproducible MS-based analytical workflows coupling optimized and efficient sample preparations, the library-free data-independent acquisition (DIA) method, and stringent validation criteria. The performances of several preparation protocols and DIA versus classical data-dependent acquisition (DDA) were evaluated using a series of four commercially available drug products. Depending on the selected protocols, the user has access to different information: on the one hand, a deep profiling of tens of identified HCPs and on the other hand, accurate and reproducible (coefficients of variation (CVs) < 12%) quantification of major HCPs. Overall, a final global HCP amount of a few tens of ng/mg mAb in these mAb samples was measured, while reaching a sensitivity down to the sub-ng/mg mAb level. Thus, this straightforward and robust approach can be intended as a routine quality control for any drug product analysis.
Collapse
Affiliation(s)
- Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| | - Joanna Bons
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| | - Geoffroy Mijola
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), F-74160 Saint-Julien-en-Genevois, France
| | - Alain Beck
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), F-74160 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| |
Collapse
|
39
|
Sim KH, Liu LCY, Tan HT, Tan K, Ng D, Zhang W, Yang Y, Tate S, Bi X. A comprehensive CHO SWATH-MS spectral library for robust quantitative profiling of 10,000 proteins. Sci Data 2020; 7:263. [PMID: 32782267 PMCID: PMC7419519 DOI: 10.1038/s41597-020-00594-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Sequential window acquisition of all theoretical fragment-ion spectra (SWATH) is a data-independent acquisition (DIA) strategy that requires a specific spectral library to generate unbiased and consistent quantitative data matrices of all peptides. SWATH-MS is a promising approach for in-depth proteomic profiling of Chinese hamster Ovary (CHO) cell lines, improving mechanistic understanding of process optimization, and real-time monitoring of process parameters in biologics R&D and manufacturing. However, no spectral library for CHO cells is publicly available. Here we present a comprehensive CHO global spectral library to measure the abundance of more than 10,000 proteins consisting of 199,102 identified peptides from a CHO-K1 cell proteome. The robustness, accuracy and consistency of the spectral library were validated for high confidence in protein identification and reproducible quantification in different CHO-derived cell lines, instrumental setups and downstream processing samples. The availability of a comprehensive SWATH CHO global spectral library will facilitate detailed characterization of upstream and downstream processes, as well as quality by design (QbD) in biomanufacturing. The data have been deposited to ProteomeXchange (PXD016047).
Collapse
Affiliation(s)
- Kae Hwan Sim
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Lillian Chia-Yi Liu
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Hwee Tong Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Kelly Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Daniel Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | | | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore.
- Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
40
|
Van de Velde J, Saller MJ, Eyer K, Voloshin A. Chromatographic clarification overcomes chromatin‐mediated hitch‐hiking interactions on Protein A capture column. Biotechnol Bioeng 2020; 117:3413-3421. [DOI: 10.1002/bit.27513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Joris Van de Velde
- Separation and Purification Sciences Division 3M Belgium NV/SA Antwerp Belgium
| | | | - Kurt Eyer
- Bioprocesses, Pharmaplan AG Basel Switzerland
| | - Alexei Voloshin
- Separation and Purification Sciences Division, 3M Company 3M Center Saint Paul Minnesota
| |
Collapse
|
41
|
Chamberlain P, Rup B. Immunogenicity Risk Assessment for an Engineered Human Cytokine Analogue Expressed in Different Cell Substrates. AAPS JOURNAL 2020; 22:65. [PMID: 32291556 DOI: 10.1208/s12248-020-00443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 11/30/2022]
Abstract
The purpose of this article is to illustrate how performance of an immunogenicity risk assessment at the earliest stage of product development can be instructive for critical early decision-making such as choice of host system for expression of a recombinant therapeutic protein and determining the extent of analytical characterization and control of heterogeneity in co- and post-translational modifications. Application of a risk-based approach for a hypothetical recombinant DNA analogue of a human endogenous cytokine with immunomodulatory functions is described. The manner in which both intrinsic and extrinsic factors could interact to influence the relative scale of risk associated with expression in alternative hosts, namely Chinese hamster ovary (CHO) cells, Pichia pastoris, Escherichia coli, or Nicotinia tabacum is considered in relation to the development of the investigational product to treat an autoimmune condition. The article discusses how particular product-related variants (primary amino acid sequence modifications and post-translational glycosylation or other modifications) and process-derived impurities (host cell proteins, endotoxins, beta-glucans) associated with the different expression systems might influence the impact of immunogenicity on overall clinical benefit versus risk for a therapeutic protein candidate that has intrinsic MHC Class II binding potential. The implications of the choice of expression system for relative risk are discussed in relation to specific actions for evaluation and measures for risk mitigation, including use of in silico and in vitro methods to understand intrinsic immunogenic potential relative to incremental risk associated with non-human glycan and protein impurities. Finally, practical guidance on presentation of this information in regulatory submissions to support clinical development is provided.
Collapse
Affiliation(s)
- Paul Chamberlain
- NDA Advisory Board, NDA Regulatory Science Ltd, Grove House, Guildford Road, Leatherhead, Surrey, KT22 9DF, UK.
| | - Bonita Rup
- Bonnie Rup Consulting, LLC, Reading, Massachusetts, USA
| |
Collapse
|
42
|
Lavoie RA, Fazio A, Williams TI, Carbonell R, Menegatti S. Targeted capture of Chinese hamster ovary host cell proteins: Peptide ligand binding by proteomic analysis. Biotechnol Bioeng 2019; 117:438-452. [DOI: 10.1002/bit.27213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Affiliation(s)
- R. Ashton Lavoie
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh North Carolina
| | - Alice Fazio
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh North Carolina
| | - Taufika Islam Williams
- Molecular Education, Technology, and Research Innovation Center (METRIC)North Carolina State UniversityRaleigh North Carolina
| | - Ruben Carbonell
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh North Carolina
- Biomanufacturing Training and Education Center (BTEC)North Carolina State UniversityRaleigh North Carolina
- The National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL)Newark Delaware
| | - Stefano Menegatti
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh North Carolina
- Biomanufacturing Training and Education Center (BTEC)North Carolina State UniversityRaleigh North Carolina
| |
Collapse
|