1
|
Application of an in-house packed octadecylsilica-functionalized graphene oxide column for capillary liquid chromatography analysis of hormones in urine samples. Anal Chim Acta 2023; 1239:340718. [PMID: 36628720 DOI: 10.1016/j.aca.2022.340718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Graphene oxide-based LC stationary phases were developed and applied for separating hormones from urine using capillaryLC-MS/MS. Using two analytical approaches - direct injection and column-switching arrangement - it was possible to evaluate the chromatographic parameters and perform tests on the raw biological fluid. Two stationary phases (SPs) were produced, varying the amino silica support particle diameter (Si, 5, and 10 μm). Graphene oxide was covalently bonded to the surface of Si particles, and this material was functionalized by the insertion of octadecylsilica groups, generating the SiGO-C18. Infra-red spectroscopy assays revealed that both steps were successful - supporting GO onto Si and further C18 customization. Scanning electron microscopy showed spherical geometries with minor irregularities and narrow particle size distribution for the produced SPs. The GO-coating rate was higher on the Si particles of 10 μm. As a result, the 10 μm produced column reported better resolution, efficiency, and peak capacity. Therefore, this SiGO-C18 capillary column (100 mm × 0.32 mm i.d., 10 μm dp) was applied successfully in a column-switching method to separate hormones in urine. Linearity (R2 above 0.99), quantification limits (between 1.0 and 5 μg/L), and other figures of merit of the method were determined. It is worth mentioning that the SiGO-C18 capillaryLC column performed adequately, separating the target compounds in less than 6 min. We hope this work could significantly contribute to shedding some light on graphene-based materials as a promising class of stationary phase for miniaturized liquid chromatography.
Collapse
|
2
|
de Campos VM, Andrade MA, Maciel EVS, de Toffoli AL, Lanças FM. Environmentally friendly analysis of sulphonamides in Brazilian honey through automated and miniaturised sample preparation coupled with LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:925-937. [PMID: 35333701 DOI: 10.1080/19440049.2022.2045364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Increased use of environmentally friendly practices has become a trend in science because of the current awareness regarding climate change and related issues. Similarly for analytical chemistry, considering the development of greener methods for reducing the use of reagents and samples and also toxic waste generation. To meet such goals, automation, and miniaturisation of sample preparation-a well-recognised laborious and time-consuming analytical step-are two promising strategies. This work associates the greener aspects of miniaturisation and the performance of automated sample preparation. Therefore, we proposed an analytical method using a miniaturised extraction column for pre-concentrating sulphamerazine, sulphamethazine, sulphamethoxazole, sulphadimethoxine, sulphathiazole, and sulphachlorpyridazine from honey and cleaning-up the samples. Several variables were optimised: extractive phase, loading flow, loading phase, and loading time. Under optimised conditions, the method showed adequate linearity between 5.0 and 60 ng g-1 with R > 0.99, and also good selectivity and recovery (114.6-124.1%) which are acceptable according to Brazilian legislation. Intra and inter-day precision were in the range 3.0-5.0%. Although sulphonamides were detected in one of the eight commercial honey samples, the value was below the established MRL. The method showed efficiency, while also exhibiting greener characteristics resulting from miniaturisation and automation, representing a promising environmentally friendly alternative for conventional sample preparation methods.
Collapse
Affiliation(s)
- Victória M de Campos
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Mariane A Andrade
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Edvaldo V S Maciel
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Ana Lúcia de Toffoli
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Fernando M Lanças
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
3
|
Maciel EVS, Lanças FM. A cartridge-based device for automated analyses of solid matrices by online sample prep-capillary LC-MS/MS. Anal Bioanal Chem 2022; 414:2725-2737. [PMID: 35106613 DOI: 10.1007/s00216-022-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Sample preparation is an essential step focused on eliminating interfering compounds while pre-concentrating the analytes. However, its multiple steps are laborious, time-consuming, and a source of errors. Currently, automated approaches represent a promising alternative to overcome these drawbacks. Similarly, miniaturisation has been considered an ideal strategy for creating greener analytical workflows. The combination of these concepts is currently highly desired by analytical chemists. However, most automated and miniaturised sample preparation techniques are primarily concerned with liquid samples, while solids are frequently overlooked. We present an approach based on a cartridge packed with solids (soil samples) coupled with a capillary LC-MS, combining sample preparation and analytical steps into a unique platform. As a proof-of-concept, nine pesticides used in sugarcane crops were extracted and analysed by our proposed method. For optimisation, a fractional factorial design (25-1) was performed with the following variables: aqueous dilution of the sample (V1), extraction strength (V2), matrix washing time (V3), extraction flow (V4), and analytical flow (V5). After, the most influential ones (V1, V2, and V3) were taken into a central composite design (23) to select their best values. Under optimised conditions, the method reported linear ranges between 10 and 125 ng g-1 with R2 > 0.985. Accuracy and precision were in accordance with the values established by the International Council for Harmonisation (Q2(R1)). Therefore, the proposed approach was effective in extracting and analysing selected pesticides in soil samples. Also, we carried out initial qualitative tests for pesticides in honeybees to see if there is the possibility to apply our method in other solids.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil.
| |
Collapse
|
4
|
Liu J, Liu Y, Guo Z, Chen X, Li Z, Xu Y, Wang Y, Zhao J. Development of On-Line Solid Phase Extraction (SPE) Coupled with High-Performance Liquid Chromatography (HPLC) for the Determination of Phenols in River Water. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1844224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jie Liu
- College of Chemistry and Material Science, Northwest University, Xi'an, China
| | - Yufeng Liu
- College of Chemistry and Material Science, Northwest University, Xi'an, China
| | - Zhian Guo
- College of Chemistry and Material Science, Northwest University, Xi'an, China
| | - Xiaomei Chen
- College of Chemistry and Material Science, Northwest University, Xi'an, China
| | - Zhiqiang Li
- College of Chemistry and Material Science, Northwest University, Xi'an, China
| | - Yidong Xu
- College of Chemistry and Material Science, Northwest University, Xi'an, China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Jingchan Zhao
- College of Chemistry and Material Science, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Henrique do Nascimento F, Trazzi CRL, Moraes AH, Velasques CM, Costa DMDS, Masini JC. Construction of polymer monolithic columns in polypropylene ink-pen tubes for separation of proteins by cation-exchange chromatography. J Sep Sci 2020; 43:4123-4130. [PMID: 32914492 DOI: 10.1002/jssc.202000803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe the synthesis of polymer monoliths inside polypropylene tubes from ink pens. These tubes are cheap, chemically stable, and resistant to pressure. UV-initiated grafting with 5 wt% benzophenone in methanol for 20 min activated the internal surface, thus enabling the covalent binding of ethylene glycol dimethacrylate, also via photografting. The pendant vinyl groups attached a poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) monolith prepared via photopolymerization. These tubes measured 100-110 mm long, with 2 mm of internal diameter. The parent monoliths were functionalized with Na2 SO3 or iminodiacetate to produce strong and weak cation exchangers, respectively. The columns exhibited permeabilities varying from 2.7 to 3.3 × 10-13 m2 , which enabled the separation of proteins at 500 µL/min and back pressures <2.8 MPa. Neither structure collapse nor monolith detachment occurred at flow rates as high as 2.0 mL/min, which produced back pressures between 6.9 and 9.0 MPa. The retention times of ovalbumin, ribonuclease A, cytochrome C, and lysozyme in salt gradient at pH 7.0 followed the order of increasing isoelectric points, confirming the cation exchange mechanism. Separation and determination of lysozyme in egg white proved the applicability of the columns to the analysis of complex samples.
Collapse
Affiliation(s)
| | | | - Amanda Hanashiro Moraes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Caryna Moraes Velasques
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jorge Cesar Masini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Vasconcelos Soares Maciel E, Mejía-Carmona K, Lanças FM. Evaluation of Two Fully Automated Setups for Mycotoxin Analysis Based on Online Extraction-Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2020; 25:molecules25122756. [PMID: 32549239 PMCID: PMC7356336 DOI: 10.3390/molecules25122756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are secondary metabolites of fungi species widely known for their potentially toxic effects on human health. Considering their frequent presence in crops and their processed food, monitoring them on food-based matrices is now an important topic. Within such a context, the sample preparation step is usually mandatory before the chromatographic analysis, due to the complexity of matrices such as nuts, cereals, beverages, and others. For these reasons, we herein present the evaluation of two greener setups, based on the automation and miniaturization of the sample preparation step for mycotoxin analysis in different beverages. Firstly, we describe an analytical method based on a multidimensional assembly, coupling a lab-made microextraction column (508 µm i.d. × 100 mm) to a UPLC–MS/MS for the analysis of ochratoxin A in beverages. This configuration used a synthesized sorbent phase containing C18-functionalized graphene–silica particles, which exhibited excellent extraction performance, as well as being reusable and cheaper than commercially available extractive phases. Sequentially, a second setup, based on a multidimensional capillary LC coupled to MS/MS, was assessed for the same purpose. In this case, a graphene oxide-based capillary extraction column (254 µm i.d. × 200 mm) was used as the first dimension, while a C18 analytical capillary column performed the mycotoxin separation in beverages. Although this second one has similarities with the first, we focused mainly on the benefits related to the link between a miniaturized/automated sample preparation device with a capillary LC–MS/MS system, which made our analysis greener. Additionally, the chromatographic efficiency could even be enhanced.
Collapse
|
7
|
Maciel EVS, de Toffoli AL, Alves JDS, Lanças FM. Multidimensional Liquid Chromatography Employing a Graphene Oxide Capillary Column as the First Dimension: Determination of Antidepressant and Antiepileptic Drugs in Urine. Molecules 2020; 25:molecules25051092. [PMID: 32121435 PMCID: PMC7179208 DOI: 10.3390/molecules25051092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 01/13/2023] Open
Abstract
Human mental disorders can be currently classified as one of the most relevant health topics. Including in this are depression and anxiety, which can affect us at any stage of life, causing economic and social problems. The treatments involve cognitive psychotherapy, and mainly the oral intake of pharmaceutical antidepressants. Therefore, the development of analytical methods for monitoring the levels of these drugs in biological fluids is critical. Considering the current demand for sensitive and automated analytical methods, the coupling between liquid chromatography and mass spectrometry, combined with suitable sample preparation, becomes a useful way to improve the analytical results even more. Herein we present an automated multidimensional method based on high-performance liquid chromatography-tandem mass spectrometry using a lab-made, graphene-based capillary extraction column connected to a C8 analytical column to determined five pharmaceutical drugs in urine. A method enhancement was performed by considering the chromatographic separation and the variables of the loading phase, loading time, loading flow, and injection volume. Under optimized conditions, the study reports good linearity with R2 > 0.98, and limits of detection in the range of 0.5–20 µg L−1. Afterward, the method was applied to the direct analysis of ten untreated urine samples, reporting traces of citalopram in one of them. The results suggest that the proposed approach could be a promising alternative that provides direct and fully automated analysis of pharmaceutical drugs in complex biological matrices.
Collapse
|