1
|
Pilařová V, Plachká K, Svec F, Nováková L. Matrix effects in ultra-high performance supercritical fluid chromatography-mass spectrometry analysis of vitamin E in plasma: The effect of sample preparation and data processing. Talanta 2024; 280:126658. [PMID: 39137659 DOI: 10.1016/j.talanta.2024.126658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
The approaches to matrix effects determination and reduction in ultra-high performance supercritical fluid chromatography with mass spectrometry detection have been evaluated in this study using different sample preparation methods and investigation of different calibration models. Five sample preparation methods, including protein precipitation, liquid-liquid extraction, supported liquid extraction, and solid phase extraction based on both "bind and elute" and "interferent removal" modes, were optimized with an emphasis on the matrix effects and recovery of 8 forms of vitamin E, including α-, β-, γ-, and δ-tocopherols and tocotrienols, from plasma. The matrix effect evaluation included the use and comparison of external and internal calibration using three models, i.e., least square with no transformation and no weighting (1/x0), with 1/x2 weighting, and with logarithmic transformation. The calibration model with logarithmic transformation provided the lowest %-errors and the best fits. Moreover, the type of the calibration model significantly affected not only the fit of the data but also the matrix effects when evaluating them based on the comparison of calibration curve slopes. Indeed, based on the used calibration model, the matrix effects calculated from calibration slopes ranged from +92% to - 72% for α-tocopherol and from -77% to +19% in the case of δ-tocotrienol. Thus, it was crucial to calculate the matrix effect by Matuszewski's post-extraction approach at six concentration levels. Indeed, a strong concentration dependence was observed for all optimized sample preparation methods, even if the stable isotopically labelled internal standards (SIL-IS) were used for compensation. The significant differences between individual concentration levels and compounds were observed, even when the tested calibration range covered only one order of magnitude. In methods with wider calibration ranges, the inappropriate use of calibration slope comparison instead of the post-extraction addition approach could result in false negative results of matrix effects. In the selected example of vitamin E, solid-phase extraction was the least affected by matrix effects when used in interferent removal mode, but supported liquid extraction resulted in the highest recoveries. We showed that the calibration model, the use of a SIL-IS, and the analyte concentration level played a crucial role in the matrix effects. Moreover, the matrix effects can significantly differ for compounds with similar physicochemical properties and close retention times. Thus, in all bioanalytical applications, where different analytes are typically determined in one analytical run, it is necessary to carefully select the data processing in addition to the method for the sample preparation, SIL-IS, and chromatography.
Collapse
Affiliation(s)
- Veronika Pilařová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Plachká
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Frantisek Svec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Chen L, Cui Y, Dean B, Liang X. Matrix effect in bioanalytical assay development using supercritical fluid chromatography-mass spectrometry. Biomed Chromatogr 2024; 38:e5759. [PMID: 37845809 DOI: 10.1002/bmc.5759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Matrix effect (ME) is commonly caused by coelution of compounds with target analytes, resulting in either suppression or enhancement of analyte ionization. Thus, to achieve the desired accuracy, precision, and sensitivity, ME needs to be evaluated and controlled during bioanalytical method development. As the application of supercritical fluid chromatography-mass spectrometry (SFC-MS) for analysis of biological samples has increased, ME using SFC-MS has also been investigated with a focus on the difference in ME in SFC-MS compared to other chromatographic techniques used for achiral separation in biological samples. Here, we provide a summary of the status of ME evaluation and mitigation in SFC-MS methods. This review presents an overview of the phenomenon of ME and methods for evaluating ME in bioanalysis. Next, the factors that can impact ME in SFC-MS-based bioanalytical methods are discussed in detail with an emphasis on SFC. A literature review of the evaluation of ME in targeted bioanalytical methods using SFC-MS is included at the end. Robust instrumentation, effective sample preparation, and superb separation selectivity are the foundations of reliable analytical methods as well as the ability to mitigate detrimental ME in SFC-MS methods.
Collapse
Affiliation(s)
- Liuxi Chen
- Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, California, USA
| | - Yuxiang Cui
- Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, California, USA
| | - Brian Dean
- Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, California, USA
| | - Xiaorong Liang
- Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, California, USA
| |
Collapse
|
3
|
Chen Y, Yang Y, Zeng X, Feng JL, Oakes K, Zhang X, Cui S. Microfluidic chip interfacing microdialysis and mass spectrometry for in vivo monitoring of nanomedicine pharmacokinetics in real time. J Chromatogr A 2022; 1683:463520. [DOI: 10.1016/j.chroma.2022.463520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
|
4
|
Hofstetter RK, Schulig L, Bethmann J, Grimm M, Sager M, Aude P, Keßler R, Kim S, Weitschies W, Link A. Supercritical fluid extraction-supercritical fluid chromatography of saliva: Single-quadrupole mass spectrometry monitoring of caffeine for gastric emptying studies †. J Sep Sci 2021; 44:3700-3716. [PMID: 34355502 DOI: 10.1002/jssc.202100443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single-quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13 C- and 32 S-labeled internal standards with external standard calibration confirmed the superiority of stable isotope-labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2 = 0.945). In contrast to off-line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2 -based extraction and separation techniques for potentially infective biomatrices.
Collapse
Affiliation(s)
- Robert K Hofstetter
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Jonas Bethmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Maximilian Sager
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Philipp Aude
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rebecca Keßler
- Department of Diagnostic Radiology and Neuroradiology, University Hospital Greifswald, Greifswald, Germany
| | - Simon Kim
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Andreas Link
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Li P, Yip H, Sun D, Kempson J, Caceres-Cortes J, Mathur A, Wu DR. Sub/supercritical Fluid Chromatography Purification and Desalting of a Cyclic Dinucleotide STING Agonist. J Chromatogr A 2021; 1652:462356. [PMID: 34218126 DOI: 10.1016/j.chroma.2021.462356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
An efficient and "endotoxin-free" purification of a cyclic dinucleotide (CDN) STING agonist was achieved to produce multigram quantities of pure BMT-390025, an active pharmaceutical ingredient (API), for toxicological studies. A two-step sub/supercritical fluid chromatography (SFC) procedure was developed for the achiral purification and desalting of the polar ionic CDN. A robust SFC process employing methanol-acetonitrile-water with ammonium acetate as co-solvent in CO2 on BEH 2-ethylpyridine was established and scaled up as the first step to achieve a successful purification. The desalting/salt-switching (i.e. removing acetate and acetamide) was conducted using methanol-water with ammonium hydroxide as co-solvent on the same column in the second step to convert the final API to the ammonium salt. Water with additive was essential to eliminating salt precipitation and improving the peak shape and resolution. Due to the extreme hydrophilicity of BMT-390025, 65% of co-solvent was needed to adequately elute the target in both steps. More than 40 g of crude API was purified and desalted producing >20 g of pure BMT-390025 as the ammonium salt which was obtained with a chemical purity of >98.5% and met the endotoxin requirement of <0.1 EU/mg. In addition, >80 g of its penultimate prior to the deprotection of the silyl group was purified at a high throughput of 6.3 g/h (0.42 g/day/g SP).
Collapse
Affiliation(s)
- Peng Li
- Department of Discovery Synthesis, Research and Early Development, Bristol Myers Squibb, Princeton, New Jersey, 08540, United States.
| | - Henry Yip
- Department of Discovery Synthesis, Research and Early Development, Bristol Myers Squibb, Princeton, New Jersey, 08540, United States.
| | - Dawn Sun
- Department of Discovery Synthesis, Research and Early Development, Bristol Myers Squibb, Princeton, New Jersey, 08540, United States
| | - James Kempson
- Department of Discovery Synthesis, Research and Early Development, Bristol Myers Squibb, Princeton, New Jersey, 08540, United States
| | - Janet Caceres-Cortes
- Department of Discovery Synthesis, Research and Early Development, Bristol Myers Squibb, Princeton, New Jersey, 08540, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Research and Early Development, Bristol Myers Squibb, Princeton, New Jersey, 08540, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Research and Early Development, Bristol Myers Squibb, Princeton, New Jersey, 08540, United States
| |
Collapse
|
6
|
Li P, Wu DR, Yip H, Sun D, Zhang H, Hou X, Kempson J, Mathur A. The effect of water on the large-scale supercritical fluid chromatography purification of two factor XIa active pharmaceutical ingredients. J Chromatogr A 2021; 1651:462318. [PMID: 34161834 DOI: 10.1016/j.chroma.2021.462318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
BMS-962212, a parenteral Factor XIa inhibitor, was scaled-up for toxicity studies. Two steps of supercritical fluid chromatography (SFC) were developed for the chiral resolution of the penultimate and achiral purification of final active pharmaceutical ingredient (API), BMS-962212. A robust SFC process using Chiralcel OD-H with methanol-acetonitrile as modifier in CO2 was established to achieve a stable and uninterrupted operation with reduced mobile phase viscosity and system pressure drop. More than 230 g of the racemic penultimate was chirally resolved to reach >99% chiral purity, ready for final tert-butyl ester deprotection to provide the API. There were a significant number of impurities in BMS-962212 generated from the final step that needed to be removed. In contrast to conventional SFC conditions, an SFC method exploiting water and ammonia as additives in both the mobile phase and sample solution was developed to accomplish purification and desalting (i.e. removing TFA) of the zwitterionic API in one step. Water as an additive eliminated salt precipitation and improved the resolution while ammonia contributed to the desalting, details of which will be discussed in this article. A throughput of 2 g/h was achieved, and >80 g of the crude API was purified. The same strategy was applied to another Factor XIa API (compound A) and its penultimate.
Collapse
Affiliation(s)
- Peng Li
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, United States.
| | - Henry Yip
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, United States
| | - Dawn Sun
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, United States
| | - Huiping Zhang
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, United States
| | - Xiaoping Hou
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, United States
| | - James Kempson
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, United States
| |
Collapse
|
7
|
Choppari T, Gunnam S, Chennuru LN, Boddala CSR, Murthy CP, Kumar Talluri MVN. Enantioselective Separation of Antiretroviral Drug Combinations on Immobilized Polysaccharide CSPs Under Subcritical Conditions Using Supercritical Fluid Chromatography Apparatus. Chromatographia 2021. [DOI: 10.1007/s10337-021-04004-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Fabrication and optimization of polypyrrole/cerium oxide/glassy carbon sensing platform for the electrochemical detection of flupirtine. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
|
10
|
Hofstetter RK, Potlitz F, Schulig L, Kim S, Hasan M, Link A. Subcritical Fluid Chromatography at Sub-Ambient Temperatures for the Chiral Resolution of Ketamine Metabolites with Rapid-Onset Antidepressant Effects. Molecules 2019; 24:E1927. [PMID: 31109124 PMCID: PMC6572699 DOI: 10.3390/molecules24101927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Chiral metabolites of ketamine exerting rapid-onset yet sustained antidepressant effects may be marketed directly in the future, but require chemo- and enantio-selective chromatographic methods for quality assurance and control. The chromatographic behavior of S-/R-ketamine, S-/R-norketamine, S-/R-dehydronorketamine, and (2R,6R)-/(2S,6S)-hydroxynorketamine in supercritical fluid chromatography (SFC) was investigated computationally and experimentally with the aim of identifying problematic pairs of enantiomers and parameters for chiral resolution. Retention on three different polysaccharide-based chiral stationary phases (Lux Amylose-2, i-Amylose-3, and i-Cellulose-5) provided new information on the significance of halogen atoms as halogen bond donors and hydrogen bond acceptors for enantioselectivity, which could be corroborated in silico by molecular docking studies. Modifiers inversely affected enantioselectivity and retention. Methanol yielded lower run times but superior chiral resolution compared to 2-propanol. Lower temperatures than those conventionally screened did not impair phase homogeneity but improved enantioresolution, at no cost to reproducibility. Thus, sub-ambient temperature subcritical fluid chromatography (SubFC), essentially low-temperature HPLC with subcritical CO2, was applied. The optimization of the SubFC method facilitated the chiral separation of ketamine and its metabolites, which was applied in combination with direct injection and online supercritical fluid extraction to determine the purity of pharmaceutical ketamine formulations for proof of concept.
Collapse
Affiliation(s)
- Robert K Hofstetter
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany.
| | - Felix Potlitz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany.
| | - Lukas Schulig
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany.
| | - Simon Kim
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany.
| | - Mahmoud Hasan
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Andreas Link
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany.
| |
Collapse
|