1
|
Wang Q, Gao G, Fang F, Wang Q, Lundquist PK, Sun L. A simple and efficient approach for preparing cationic coating with tunable electroosmotic flow for capillary zone electrophoresis-mass spectrometry-based top-down proteomics. Anal Chim Acta 2024; 1328:343162. [PMID: 39266194 PMCID: PMC11404064 DOI: 10.1016/j.aca.2024.343162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has become a valuable analytical technique in top-down proteomics (TDP). CZE-MS/MS-based TDP typically employs separation capillaries with neutral coatings (i.e., linear polyacrylamide, LPA). However, issues related to separation resolution and reproducibility remain with the LPA-coated capillaries due to the unavoidable non-specific protein adsorption onto the capillary wall. Cationic coatings can be critical alternatives to LPA coating for CZE-MS/MS-based TDP due to the electrostatic repulsion between the positively charged capillary inner wall and proteoform molecules in the acidic separation buffer. Unfortunately, there are only very few studies using cationic coating-based CZE-MS/MS for TDP studies. RESULTS In this work, we aimed to develop a simple and efficient approach for preparing separation capillaries with a cationic coating, i.e., poly (acrylamide-co-(3-acrylamidopropyl) trimethylammonium chloride [PAMAPTAC]) for CZE-MS/MS-based TDP. The PAMAPTAC coating-based CZE-MS produced significantly better separation resolution of proteoforms compared to the traditionally used LPA-coated approach. It achieved reproducible separation and measurement of a simple proteoform mixture and a complex proteome sample (i.e., a yeast cell lysate) regarding migration time, proteoform intensity, and the number of proteoform identifications. The PAMAPTAC coating-based CZE-MS enabled the detection of large proteoforms (≥30 kDa) from the yeast cell lysate reproducibly without any size-based prefractionation. Interestingly, the mobility of proteoforms using the PAMAPTAC coating can be predicted accurately using a simple semi-empirical model. SIGNIFICANCE The results render the PAMAPTAC coating as a valuable alternative to the LPA coating to advance CZE-MS-based TDP towards high-resolution separation and highly reproducible measurement of proteoforms in complex samples.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Guangyao Gao
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Witzel MT, Veltri LM, Kostelic M, Elshamy YS, Lucas JA, Lai S, Du C, Wysocki VH, Holland LA. Protein analysis using capillary electrophoresis coupled to mass spectrometry through vibrating sharp-edge spray ionization. Electrophoresis 2024; 45:1597-1605. [PMID: 38577828 PMCID: PMC11438567 DOI: 10.1002/elps.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Capillary electrophoresis (CE) interfaced to mass spectrometry (MS) with electrospray ionization typically incorporates acidic additives or organic solvents to assist in ionization. Vibrating sharp-edge spray ionization (VSSI) is a voltage-free method to interface CE and MS that does not require these additives, making it appealing for protein analyses. CE-VSSI nanoflow sheath separations are performed with low ionic strength aqueous solutions in the sheath to reduce suppression. Serine is also included in the sheath to reduce analyte adduction. Proteins are detected in the 2.5-10 µM range, corresponding to an injected mass range of 0.1-1.2 ng. The anionic proteins β-lactoglobulin and transferrin are resolved using an unmodified fused silica capillary because they do not exhibit nonspecific surface adsorption. Conversely, separations of cationic proteins cytochrome c, ribonuclease A, and α-chymotrypsinogen A in an unmodified capillary require acidic background electrolytes to overcome adsorption. Alternatively, a semipermanent coating comprised self-assembled lipids overcomes surface adsorption at a neutral pH. Separations with zwitterionic and hybrid cationic coatings are complete within 15 or 6 min, respectively. The dimeric form of triosephosphate isomerase was observed at a 60 µM, corresponding to a mass of 19 ng, by dropping the temperature of the MS inlet.
Collapse
Affiliation(s)
- Makenzie T Witzel
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Lindsay M Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Marius Kostelic
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Yousef S Elshamy
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - John A Lucas
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Stella Lai
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Chen Du
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Vicki H Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
3
|
Elshamy YS, Strein TG, Holland LA, Li C, DeBastiani A, Valentine SJ, Li P, Lucas JA, Shaffer TA. Nanoflow Sheath Voltage-Free Interfacing of Capillary Electrophoresis and Mass Spectrometry for the Detection of Small Molecules. Anal Chem 2022; 94:11329-11336. [PMID: 35913997 PMCID: PMC9387528 DOI: 10.1021/acs.analchem.2c02074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coupling capillary electrophoresis (CE) to mass spectrometry (MS) is a powerful strategy to leverage a high separation efficiency with structural identification. Traditional CE-MS interfacing relies upon voltage to drive this process. Additionally, sheathless interfacing requires that the electrophoresis generates a sufficient volumetric flow to sustain the ionization process. Vibrating sharp-edge spray ionization (VSSI) is a new method to interface capillary electrophoresis to mass analyzers. In contrast to traditional interfacing, VSSI is voltage-free, making it straightforward for CE and MS. New nanoflow sheath CE-VSSI-MS is introduced in this work to reduce the reliance on the separation flow rate to facilitate the transfer of analyte to the MS. The nanoflow sheath VSSI spray ionization functions from 400 to 900 nL/min. Using the new nanoflow sheath reported here, volumetric flow rate through the separation capillary is less critical, allowing the use of a small (i.e., 20 to 25 μm) inner diameter separation capillary and enabling the use of higher separation voltages and faster analysis. Moreover, the use of a nanoflow sheath enables greater flexibility in the separation conditions. The nanoflow sheath is operated using aqueous solutions in the background electrolyte and in the sheath, demonstrating the separation can be performed under normal and reversed polarity in the presence or absence of electroosmotic flow. This includes the use of a wider pH range as well. The versatility of nanoflow sheath CE-VSSI-MS is demonstrated by separating cationic, anionic, and zwitterionic molecules under a variety of separation conditions. The detection sensitivity observed with nanoflow sheath CE-VSSI-MS is comparable to that obtained with sheathless CE-VSSI-MS as well as CE-MS separations with electrospray ionization interfacing. A bare fused silica capillary is used to separate cationic β-blockers with a near-neutral background electrolyte at concentrations ranging from 1.0 nM to 1.0 μM. Under acidic conditions, 13 amino acids are separated with normal polarity at a concentration ranging from 0.25 to 5 μM. Finally, separations of anionic compounds are demonstrated using reversed polarity under conditions of suppressed electroosmotic flow through the use of a semipermanent surface coating. With a near-neutral separation electrolyte, anionic nonsteroidal anti-inflammatory drugs are detected over a concentration range of 0.1 to 5.0 μM.
Collapse
Affiliation(s)
- Yousef S Elshamy
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Timothy G Strein
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - John A Lucas
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Tyler A Shaffer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
4
|
Wang L, Zhang W, Shao Y, Zhang D, Guo G, Wang X. Analytical methods for obtaining binding parameters of drug–protein interactions: A review. Anal Chim Acta 2022; 1219:340012. [DOI: 10.1016/j.aca.2022.340012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
|
5
|
Štěpánová S, Kašička V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review. Anal Chim Acta 2022; 1209:339447. [DOI: 10.1016/j.aca.2022.339447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
|
6
|
Rahimnejad M, Rabiee N, Ahmadi S, Jahangiri S, Sajadi SM, Akhavan O, Saeb MR, Kwon W, Kim M, Hahn SK. Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering. ACS APPLIED BIO MATERIALS 2021; 4:8110-8128. [PMID: 35005915 DOI: 10.1021/acsabm.1c00932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials focusing on MPC polymers and highlight their attractive potentials for applications in micro/nanofabricated fluidic devices, biosensors, lab-on-a-chip, drug delivery systems (DDSs), COVID-19 potential usages for early diagnosis and even treatment, and artificial extracellular matrix scaffolds for cellular engineering.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Sepideh Jahangiri
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H2X 0A9, Canada
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil 44001, Kurdistan Region, Iraq.,Department of Phytochemistry, SRC, Soran University, Soran City 44008, Kurdistan Region, Iraq
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk 80-233, Poland
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea
| | - Mungu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
7
|
Unal DN, Yıldırım S, Kurbanoglu S, Uslu B. Current trends and roles of surfactants for chromatographic and electrochemical sensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Guzman NA, Guzman DE. Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules 2021; 11:1443. [PMID: 34680076 PMCID: PMC8533156 DOI: 10.3390/biom11101443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Over the years, multiple biomarkers have been used to aid in disease screening, diagnosis, prognosis, and response to therapy. As of late, protein biomarkers are gaining strength in their role for early disease diagnosis and prognosis in part due to the advancements in identification and characterization of a distinct functional pool of proteins known as proteoforms. Proteoforms are defined as all of the different molecular forms of a protein derived from a single gene caused by genetic variations, alternative spliced RNA transcripts and post-translational modifications. Monitoring the structural changes of each proteoform of a particular protein is essential to elucidate the complex molecular mechanisms that guide the course of disease. Clinical proteomics therefore holds the potential to offer further insight into disease pathology, progression, and prevention. Nevertheless, more technologically advanced diagnostic methods are needed to improve the reliability and clinical applicability of proteomics in preventive medicine. In this manuscript, we review the use of immunoaffinity capillary electrophoresis (IACE) as an emerging powerful diagnostic tool to isolate, separate, detect and characterize proteoform biomarkers obtained from liquid biopsy. IACE is an affinity capture-separation technology capable of isolating, concentrating and analyzing a wide range of biomarkers present in biological fluids. Isolation and concentration of target analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. IACE has the potential to generate rapid results with significant accuracy, leading to reliability and reproducibility in diagnosing and monitoring disease. Additionally, IACE has the capability of monitoring the efficacy of therapeutic agents by quantifying companion and complementary protein biomarkers. With advancements in telemedicine and artificial intelligence, the implementation of proteoform biomarker detection and analysis may significantly improve our capacity to identify medical conditions early and intervene in ways that improve health outcomes for individuals and populations.
Collapse
Affiliation(s)
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, USA;
- Division of Hospital Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Martínková E, Křížek T, Kubíčková A, Coufal P. Mobilization of electroosmotic flow markers in capillary zone electrophoresis. Electrophoresis 2021; 42:932-938. [PMID: 33570209 DOI: 10.1002/elps.202000301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/11/2022]
Abstract
UV-absorbing neutral substances are commonly used as markers of mean electroosmotic flow in capillary electrophoresis for their zero electrophoretic mobility in an electric field. However, some of these markers can interact with background electrolyte components and migrate at a different velocity than the electroosmotic flow. Thus, we tested 11 markers primarily varying in their degree of methylation and type of central atom in combination with five background electrolyte cations differing in their ionic radii and surface charge density, measuring the relative electrophoretic mobility using thiourea as a reference marker. Our results from this set of experiments showed some general trends in the mobilization of the markers based on the effects of marker structure and type of background electrolyte cation on the relative electrophoretic mobility. As an example, the effects of an inadequate choice of marker on analyte identification were illustrated in the electrophoretic separation of glucosinolates. Therefore, our findings may help electrophoretists appropriately select electroosmotic flow markers for various electrophoretic systems.
Collapse
Affiliation(s)
- Eva Martínková
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Kubíčková
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Coufal
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Affiliation(s)
- Cassandra L. Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
11
|
Xing J, Wang F, Cong H, Wang S, Shen Y, Yu B. Analysis of proteins and chiral drugs based on vancomycin covalent capillary electrophoretic coating. Analyst 2020; 146:1320-1325. [PMID: 33367313 DOI: 10.1039/d0an02018d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Vancomycin is an amphoteric glycopeptide molecule, and its group diversity and chiral active sites provide a potential basis for its application in chromatographic analysis. In this article, using photosensitive diazo resin (DR) as the coupling agent, vancomycin is modified on the inner wall of the capillary to construct a capillary coating separation system. The highlight of the coated capillary is that it has both anti-protein adsorption and chiral separation properties. Compared with the bare capillary or non-covalently bonded DR/vancomycin-coated capillary, it can not only achieve the separation of four mixed proteins of lysozyme (Lys), bovine serum albumin (BSA), myoglobin (Mb), and ribonuclease A (RNase A), but also shows excellent performance in chiral drugs. The coated capillary effectively solves the problems of low efficiency of the separation column and high sample loss and provides ideas for the development of coated capillaries in the future.
Collapse
Affiliation(s)
- Jie Xing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
12
|
Liu Y, Hayes MA. Orders-of-Magnitude Larger Force Demonstrated for Dielectrophoresis of Proteins Enabling High-Resolution Separations Based on New Mechanisms. Anal Chem 2020; 93:1352-1359. [DOI: 10.1021/acs.analchem.0c02763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yameng Liu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Mark A. Hayes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
13
|
Kristoff CJ, Bwanali L, Veltri LM, Gautam GP, Rutto PK, Newton EO, Holland LA. Challenging Bioanalyses with Capillary Electrophoresis. Anal Chem 2020; 92:49-66. [PMID: 31698907 PMCID: PMC6995690 DOI: 10.1021/acs.analchem.9b04718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Courtney J. Kristoff
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Gayatri P. Gautam
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Patrick K. Rutto
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ebenezer O. Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|