1
|
Xu CY, Zhong YX, Cui YY, Yang CX. Thiol-yne click post-synthesis of phenylboronic acid-functionalized magnetic cyclodextrin microporous organic network for selective and efficient extraction of antiepileptic drugs. Talanta 2024; 277:126440. [PMID: 38897013 DOI: 10.1016/j.talanta.2024.126440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Owing to their incomplete digestion in the human body and inadequate removal by sewage treatment plants, antiepileptic drugs (AEDs) accumulate in water bodies, potentially affecting the exposed humans and aquatic organisms. Therefore, sensitive and reliable detection methods must be urgently developed for monitoring trace AEDs in environmental water samples. Herein, a novel phenylboronic acid-functionalized magnetic cyclodextrin microporous organic network (Fe3O4@CD-MON-PBA) was designed and synthesized via the thiol-yne click post-modification strategy for selective and efficient magnetic solid-phase extraction (MSPE) of trace AEDs from complex sample matrices through the specific B-N coordination, π-π, hydrogen bonding, electrostatic, and host-guest interactions. Fe3O4@CD-MON-PBA exhibited a large surface area (118.5 m2 g-1), rapid magnetic responsiveness (38.6 emu g-1, 15 s), good stability and reusability (at least 8 times), and abundant binding sites for AEDs. Under optimal extraction conditions, the proposed Fe3O4@CD-MON-PBA-MSPE-HPLC-UV method exhibited a wide linear range (0.5-1000 μg L-1), low limits of detection (0.1-0.5 μg L-1) and quantitation (0.3-2 μg L-1), good anti-interference ability, and large enrichment factors (92.2-104.3 to 92.3-98.0) for four typical AEDs. This work confirmed the feasibility of the thiol-yne click post-synthesis strategy for constructing novel and efficient multifunctional magnetic CD-MONs for sample pretreatment and elucidated the significance of B-N coordination between PBA and N-containing AEDs.
Collapse
Affiliation(s)
- Chun-Ying Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yi-Xin Zhong
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
2
|
Lavrukhina OI, Amelin VG, Kish LK, Tretyakov AV, Pen’kov TD. Determination of Residual Amounts of Antibiotics in Environmental Samples and Food Products. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
A novel PEG-mediated boric acid functionalized magnetic nanomaterials based fluorescence biosensor for the detection of Staphylococcus aureus. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Zeng Y, Chang F, Liu Q, Duan L, Li D, Zhang H. Recent Advances and Perspectives on the Sources and Detection of Antibiotics in Aquatic Environments. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5091181. [PMID: 35663459 PMCID: PMC9159860 DOI: 10.1155/2022/5091181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 05/31/2023]
Abstract
Water quality and safety are vital to the ecological environment, social development, and ecological susceptibility. The extensive use and continuous discharge of antibiotics have caused serious water pollution; antibiotics are widely found in freshwater, drinking water, and reservoirs; and this pollution has become a common phenomenon and challenge in global water ecosystems, as water polluted by antibiotics poses serious risks to human health and the ecological environment. Therefore, the antibiotic content in water should be identified, monitored, and eliminated. Nevertheless, there is no single method that can detect all different types of antibiotics, so various techniques are often combined to produce reliable results. This review summarizes the sources of antibiotic pollution in water, covering three main aspects: (1) wastewater discharges from domestic sewage, (2) medical wastewater, and (3) animal physiology and aquaculture. The existing analytical techniques, including extraction techniques, conventional detection methods, and biosensors, are reviewed. The electrochemical biosensors have become a research hotspot in recent years because of their rapid detection, high efficiency, and portability, and the use of nanoparticles contributes to these outstanding qualities. Additionally, the comprehensive quality evaluation of various detection methods, including the linear detection range, detection limit (LOD), and recovery rate, is discussed, and the future of this research field is also prospected.
Collapse
Affiliation(s)
- Yanbo Zeng
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| |
Collapse
|
5
|
Preparation of boronate-modified larger mesoporous polymer microspheres with fumed silica nanoparticle and toluene as synergistic porogen for selective separation of sulfonamides. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Moyo B, Gitari M, Tavengwa NT. Application of sorptive micro-extraction techniques for the pre-concentration of antibiotic drug residues from food samples - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1865-1880. [PMID: 33000997 DOI: 10.1080/19440049.2020.1802069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antibiotic residues have become a major concern worldwide as food contaminants due to the risk that they may pose to human health. The presence of these residues in food is due to improper veterinary practices. Consequently, rapid and cost-effective clean-up methods prior to analysis for these residues in food matrices are increasingly becoming necessary in order to ensure food safety. Miniaturised extraction and pre-concentration techniques have been developed as alternatives to conventional extraction procedures in recent years. Furthermore, the current trends in analytical sample preparation favour extraction techniques that comply with the principles of green analytical chemistry. Solid phase micro-extraction, stir bar sorptive extraction, stir cake sorptive extraction and fabric phase sorptive extraction methods are very promising sorbent-based sorptive micro-extraction techniques, and they are compliant to the principles of green chemistry. This review critically discusses the application of these techniques in the extraction and pre-concentration of antibiotic residues from food samples in the years 2015 to 2020.
Collapse
Affiliation(s)
- Babra Moyo
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda , Thohoyandou, South Africa
| | - Mugera Gitari
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda , Thohoyandou, South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda , Thohoyandou, South Africa
| |
Collapse
|
7
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
8
|
Xie X, Huang S, Zheng J, Ouyang G. Trends in sensitive detection and rapid removal of sulfonamides: A review. J Sep Sci 2020; 43:1634-1652. [PMID: 32043724 DOI: 10.1002/jssc.201901341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Sulfonamides in environmental water, food, and feed are a major concern for both aquatic ecosystems and public health, because they may lead to the health risk of drug resistance. Thus, numerous sensitive detection and rapid removal methodologies have been established. This review summarizes the sample preparation techniques and instrumental methods used for sensitive detection of sulfonamides. Additionally, adsorption and photocatalysis for the rapid removal of sulfonamides are also discussed. This review provides a comprehensive perspective on future sulfonamide analyses that have good performance, and on the basic methods for the rapid removal of sulfonamides.
Collapse
Affiliation(s)
- Xintong Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
9
|
Zhang QC, Xia GP, Liang JY, Zhang XL, Jiang L, Zheng YG, Wang XY. NH 2-MIL-53(Al) Polymer Monolithic Column for In-Tube Solid-Phase Microextraction Combined with UHPLC-MS/MS for Detection of Trace Sulfonamides in Food Samples. Molecules 2020; 25:E897. [PMID: 32085411 PMCID: PMC7070345 DOI: 10.3390/molecules25040897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 01/20/2023] Open
Abstract
In this study, a novel monolithic capillary column based on a NH2-MIL-53(Al) metal-organic framework (MOF) incorporated in poly (3-acrylamidophenylboronic acid/methacrylic acid-co-ethylene glycol dimethacrylate) (poly (AAPBA/MAA-co-EGDMA)) was prepared using an in situ polymerization method. The characteristics of the MOF-polymer monolithic column were investigated by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, Brunauer-Emmett-Teller analysis, and thermogravimetric analysis. The prepared MOF-polymer monolithic column showed good permeability, high extraction efficiency, chemical stability, and good reproducibility. The MOF-polymer monolithic column was used for in-tube solid-phase microextraction (SPME) to efficiently adsorb trace sulfonamides from food samples. A novel method combining MOF-polymer-monolithic-column-based SPME with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was successfully developed. The linear range was from 0.015 to 25.0 µg/L, with low limits of detection of 1.3-4.7 ng/L and relative standard deviations (RSDs) of < 6.1%. Eight trace sulfonamides in fish and chicken samples were determined, with recoveries of the eight analytes ranging from 85.7% to 113% and acceptable RSDs of < 7.3%. These results demonstrate that the novel MOF-polymer-monolithic-column-based SPME coupled with UHPLC-MS/MS is a highly sensitive, practical, and convenient method for monitoring trace sulfonamides in food samples previously extracted with an adequate solvent.
Collapse
Affiliation(s)
- Qian-Chun Zhang
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, China; (G.-P.X.); (J.-Y.L.); (X.-L.Z.); (L.J.); (Y.-G.Z.)
| | | | | | | | | | | | - Xing-Yi Wang
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, China; (G.-P.X.); (J.-Y.L.); (X.-L.Z.); (L.J.); (Y.-G.Z.)
| |
Collapse
|