1
|
Qin S, Li X, Han E, Fan Y, Liu S, Ding Y, Qi S. Strategies and mechanisms for improving the detection accuracy of nonextractable residues of polycyclic aromatic hydrocarbons in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173908. [PMID: 38862044 DOI: 10.1016/j.scitotenv.2024.173908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
The methods that can accurately measure the concentrations of nonextractable residues (NERs) of hydrophobic organic contaminants (HOCs) in soil are still lacked in current studies. In this study, three methods, namely methanolic saponification treatment (MST), silylation treatment (ST), and acid deashing treatment (ADT), were investigated and then combined to extract the NERs of six types of polycyclic aromatic hydrocarbons (PAHs) from nine soil samples. The NER concentrations of PAHs obtained by ST (2.43-521.73 ng g-1) were comparable to or significantly higher than those obtained by MST (1.94-291.54 ng g-1), owing to the properties of soil and target compounds. Additionally, ADT could further release a considerable amount of PAH NERs (0.39-276.99 ng g-1) from the soils that had been treated with ST. The mechanism was that acid solution dissolved mineral components, significantly increasing the pore size of the soil matrices from 9.37-15.57 nm to 17.11-27.51 nm. The average percentage of each PAH obtained by ADT (the ratio of the amount obtained by ADT to the total NER content) exhibited a negative correlation with their ring numbers (R2 = 0.62, p < 0.05), whereas the percentage of targets recovered through ST increased linearly with their log KOW values (R2 = 0.75, p < 0.05). Moreover, there is a positive correlation (R2 = 0.73, p < 0.05) between the NER percentages of phenanthrene (obtained by ST-ADT) and the specific surface areas of soils, and the NER percentages of benzo(g,h,i)perylene is positively correlated to the content of total organic carbon (R2 = 0.62, p < 0.05). These results suggested that the amounts and locations of NERs were influenced by both the physicochemical characteristics of PAHs and soils. These findings provide some basic understandings of the entrapped mechanisms of PAH NERs, helping to establish strategies for improving their detection accuracy.
Collapse
Affiliation(s)
- Shibin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xiaoshui Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Erxuan Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yuhan Fan
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shihong Liu
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Peng X, Liu L, Hu X, Yan W, Zheng D, Xia Z, Yu Q, Zhou Y, Xia H, Peng L. Facile fabrication of naphthalene-functionalized magnetic nanoparticles for efficient extraction of polycyclic aromatic hydrocarbons from environmental water and fish samples. J Chromatogr A 2023; 1706:464229. [PMID: 37506458 DOI: 10.1016/j.chroma.2023.464229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In this study, naphthalene-modified magnetic nanoparticles (Fe3O4@Nap) were simply prepared based on specific chelation interaction between phosphate groups and metal ions on Fe3O4 surface. The resultant Fe3O4@Nap were characterized by FTIR, BET, SEM, TEM, NAM, TGA, and VSM techniques. With Fe3O4@Nap as adsorbent, the polycyclic aromatic hydrocarbons (PAHs) were efficiently extracted by magnetic solid-phase extraction (MSPE) from environmental water and fish samples through the π-π interaction between modified naphthalene groups and PAHs, followed by their determination by GC-MS/MS. The key parameters influencing the extraction efficiency were investigated. Under the optimized conditions, the Fe3O4@Nap-based MSPE/GC-MS/MS method proposed in this paper was evaluated and applied for analyzing PAHs in environmental water and fish samples. And the proposed MSPE/GC-MS/MS method exhibited good linearities for water samples (in the range of 0.1-10 ng/mL, R2 >0.9945) and for fish samples (in the range of 1-100 ng/g, R2 > 0.9905). The limits of detection (LODs) for water and fish samples were 0.004-0.031 ng/mL and 0.07-0.28 ng/g, respectively. Additionally, this method exhibited desirable accuracy and precision. The PAH recovery values from water and fish samples ranged from 81.5% to 109.6% with inter- and intra-day relative standard deviations (RSDs) of less than 12.8%. The MSPE/GC-MS/MS method was successfully applied to the analysis of real environmental water and fish samples. Overall, the newly synthesized Fe3O4@Nap exhibited high sensitivity, specificity, reusability, repeatability, and it could efficiently extract PAHs from environmental water and fish samples by MSPE.
Collapse
Affiliation(s)
- Xitian Peng
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Li Liu
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Xizhou Hu
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Wei Yan
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Dan Zheng
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Zhenzhen Xia
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Qiongwei Yu
- Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Youxiang Zhou
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China.
| | - Hong Xia
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China.
| | - Lijun Peng
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China.
| |
Collapse
|