1
|
Hu Y, Zhang P, Liu K, Peng B, Zhang W, He L, Zhao W, Zhang S. Preparation and evaluation of a pyridine sulfonate betaine-based zwitterionic stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2024; 1736:465333. [PMID: 39260151 DOI: 10.1016/j.chroma.2024.465333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
A zwitterionic stationary phase comprising pyridinium cations and sulfonate anions was successfully developed through thiol-ene click chemistry. Using seven polar small molecules as probes, the zwitterionic stationary phase showed high separation selectivity and excellent column efficiency (35,200-54,800 plates/m) compared with two commercial columns. The influence of water proportion, salt concentration, and pH in the mobile phase, and column temperature, on the retention of six polar compounds was examined. The retention mechanism was explored by three hydrophilic retention models, Tanaka test and linear solvation energy relationship analysis. For the analysis of sample dairy products (milk powder, milk, and yogurt), the stationary phase was operated in hydrophilic interaction chromatography mode without the addition of buffer salts, facilitating rapid and efficient detection and quantification of melamine. The LOD and LOQ are 0.04 mg⋅g-1 and 0.13 mg⋅g-1, respectively, and the recovery rate is 90.3 - 102.8 %. The zwitterionic stationary phase has the advantages of simple preparation, good method reproducibility, good selectivity and high precision.
Collapse
Affiliation(s)
- Yongxing Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Pengcheng Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Kejian Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Bin Peng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Wenfen Zhang
- Chemistry College, Zhengzhou University, Zhengzhou, 450001, PR China; Food Laboratory of Zhongyuan, Luohe 462000, Henan Province, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Shusheng Zhang
- Chemistry College, Zhengzhou University, Zhengzhou, 450001, PR China; Food Laboratory of Zhongyuan, Luohe 462000, Henan Province, PR China
| |
Collapse
|
2
|
Gritti F, Izzo G, Schaffer R. Understanding retention and intra-particle diffusivity of alkylsulfobetaine-bonded Ethylene Bridged Particles with different mesopore sizes for hydrophilic interaction liquid chromatography applications. J Chromatogr A 2024; 1733:465232. [PMID: 39178660 DOI: 10.1016/j.chroma.2024.465232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The role of the average pore diameter (APD) of 1.7μm AtlantisTM Premier BEHTM Particles derivatized with a zwitterionic group (propylsulfobetaine) on the efficiency of their 2.1 × 50 mm hydrophilic interaction liquid chromatography (HILIC) packed columns is investigated experimentally. Van Deemter plots for toluene (neutral, hydrophobic), cytosine (neutral, polar), tosylate (negatively charged), bretylium and atenolol (positively charged) were measured on three HILIC columns packed with BEH Z-HILIC Particles having APDs of 95 Å, 130 Å, and 300 Å. The intraparticle diffusivities of the analytes across these three BEH Z-HILIC Particles were measured by the peak parking method. The experimental data reveal that the slope of the C-branch of the van Deemter plots can be reduced by factors of about 15 for toluene, 2.5 for cytosine, 6 for atenolol, 5 for tosylate, and 14 for bretylium with increasing the APD from 95 Å to 300 Å. This observation is explained by: (1) the reduced amount of the highly viscous water diffuse layer and subsequent increase of the amount of acetonitrile-rich eluent in the mesopores, (2) the localized electrostatic adsorption of the retained analytes onto the zwitterion-bonded BEH Particles, and (3) depletion/excess of the analytes into the water diffuse layer. A general model of intraparticle diffusivity was then proposed to account for the impact of the APD of Z-HILIC Particles on the solid-to-liquid mass transfer resistance of small molecules. The model highlights the relevance of the thickness of the water diffuse layer, the access of the bulk eluent into the mesopore, the localized electrostatic adsorption, and the partitioning constant of the retained analyte between the bulk eluent and the water diffuse layer.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamentals, and Chemistry R & D, 34 Maple Street, Milford, MA, 01757, USA.
| | - Gary Izzo
- Waters Corporation, Instrument/Core Research/Fundamentals, and Chemistry R & D, 34 Maple Street, Milford, MA, 01757, USA
| | - Richard Schaffer
- Waters Corporation, Instrument/Core Research/Fundamentals, and Chemistry R & D, 34 Maple Street, Milford, MA, 01757, USA
| |
Collapse
|
3
|
Zhang P, Hu Y, Liu K, Sun Y, He L, Zhao W. Hydrophilic interaction chromatographic evaluation of zwitterionic polymer grafted silica gel via multiple binding sites. J Sep Sci 2024; 47:e2400065. [PMID: 39054584 DOI: 10.1002/jssc.202400065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
A novel zwitterionic polymer grafted silica stationary phase, Sil-PZIC, was prepared by bonding poly(ethylene maleic anhydride) molecules on the surface of silica via multiple binding sites, followed by ammonolysis of maleic anhydride through a nucleophilic substitution reaction with ethylenediamine. The stationary phase was characterized by solid-state 13C nuclear magnetic resonance, zeta potential, and elemental analysis and the results show the successful encapsulation of zwitterionic polymer on the surface of silica. The chromatographic performance of Sil-PZIC was investigated by using nucleosides and nucleic bases as test analytes The variation of retention and separation performance of these model compounds were investigated by varying the chromatographic conditions such as the components of mobile phase, salt concentration, and pH. The results show that the retention of the Sil-PZIC phase was dominated by a hydrophilic partitioning mechanism accompanied by secondary interactions such as electrostatic and hydrogen bonding. In addition, saccharides and Amadori compounds were also well separated on the Sil-PZIC, indicating that the Sil-PZIC column has potential application for separation of the polar compound.
Collapse
Affiliation(s)
- Pengcheng Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Yongxing Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Kunling Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| |
Collapse
|
4
|
Yu Z, Li Z, Zhang F, Yang B. A lysine and amide functionalized polymer-based polar stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2023; 1708:464328. [PMID: 37666063 DOI: 10.1016/j.chroma.2023.464328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
A novel polymer-based polar stationary phase for hydrophilic interaction chromatography (HILIC) is described. It was obtained by grafting lysine and acrylamide onto poly (glycidyl methacrylate-divinylbenzene) (GMA-DVB) microspheres via ring-opening reaction of epoxy groups and free radical polymerization with pendant double bonds of the microspheres. Multiple types of polar groups including zwitterionic (carboxylate and amine), amide and diol onto the microspheres make them highly hydrophilic. It showed typical HILIC character and good separation performance towards model polar analytes. Negligible bleed level under gradient elution mode (up to 50% fraction of water) was observed. It also exhibited specific separation selectivity to ionic analytes and simultaneous separation of anions and cations could be achieved in ideal electrostatic selectivity elution order, e.g. I-< NO3-
Collapse
Affiliation(s)
- Ziteng Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zongying Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Feifang Zhang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bingcheng Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Sun HF, Cui YY, Li HL, Yang CX. Click postsynthesis of microporous organic network@silica composites for reversed-phase/hydrophilic interaction mixed-mode chromatography. Anal Bioanal Chem 2023:10.1007/s00216-023-04680-0. [PMID: 37017725 DOI: 10.1007/s00216-023-04680-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/12/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Recently, the good physical and chemical properties, well-defined pore architectures, and designable topologies have made microporous organic networks (MONs) excellent potential candidates in high-performance liquid chromatography (HPLC). However, their superior hydrophobic structures restrict their application in the reversed-phase mode. To solve this obstacle and to expand the application of MONs in HPLC, we realized the thiol-yne "click" postsynthesis of a novel hydrophilic MON-2COOH@SiO2-MER (MER denotes mercaptosuccinic acid) microsphere for reversed-phase/hydrophilic interaction mixed-mode chromatography. SiO2 was initially decorated with MON-2COOH using 2,5-dibromoterephthalic acid and tetrakis(4-ethynylphenyl)methane as monomers, and MER was then grafted via thiol-yne click reaction to yield MON-2COOH@SiO2-MER microspheres (5 μm) with a pore size of ~1.3 nm. The -COOH groups in 2,5-dibromoterephthalic acid and the post-modified MER molecules considerably improved the hydrophilicity of pristine MON and enhanced the hydrophilic interactions between the stationary phase and analytes. The retention mechanisms of the MON-2COOH@SiO2-MER packed column were fully discussed with diverse hydrophobic and hydrophilic probes. Benefiting from the numerous -COOH recognition sites and benzene rings within MON-2COOH@SiO2-MER, the packed column exhibited good resolution for the separation of sulfonamides, deoxynucleosides, alkaloids, and endocrine-disrupting chemicals. A column efficiency of 27,556 plates per meter was obtained for the separation of gastrodin. The separation performance of the MON-2COOH@SiO2-MER packed column was also demonstrated by comparing with those of MON-2COOH@SiO2, commercial C18, ZIC-HILIC, and bare SiO2 columns. This work highlights the good potential of the thiol-yne click postsynthesis strategy to construct MON-based stationary phases for mixed-mode chromatography.
Collapse
Affiliation(s)
- Hao-Fei Sun
- College of Chemistry, Research Center for Analytical Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Hong-Liang Li
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| |
Collapse
|
6
|
Murakami H, Iida K, Oda Y, Umemura T, Nakajima H, Esaka Y, Inoue Y, Teshima N. Hydrophilic interaction chromatography-type sorbent prepared by the modification of methacrylate-base resin with polyethyleneimine for solid-phase extraction of polar compounds. ANAL SCI 2023; 39:375-381. [PMID: 36577893 DOI: 10.1007/s44211-022-00250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Hydrophilic interaction chromatography (HILIC)-type sorbents were newly developed for the solid-phase extraction (SPE) of polar compounds. Two methacrylate-base resins with different cross-linking monomers and pore properties were synthesized, and three polyethyleneimines (PEIs) with different molecular weights were modified onto each base resin. In both cases, PEIs with a molecular weight of 10,000 (PEI-10,000) exhibited the highest adsorption properties for polar compounds (uracil, uridine, adenosine, cytidine, and guanosine). To control the water-enriched layer at the surface of the PEI-10,000-modified sorbents, the additive amount of PEI-10,000 in the modified reaction was also optimized. When 10 times the amount of PEI-10,000 to each base resin was added, an improvement in adsorption property was observed. Moreover, the use of a nonaqueous sample solution (100% acetonitrile) during the sample loading process drastically improved adsorption, especially for uracil (about 80%) and adenosine (100%). These results indicate that the formation of a strong water-enriched layer at the surface of sorbents with an effective expression of hydrophilic interaction was an important factor in the adsorption properties of polar compounds in HILIC mode-SPE.
Collapse
Affiliation(s)
- Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan.
| | - Keisuke Iida
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Yuki Oda
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yukihiro Esaka
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yoshinori Inoue
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| |
Collapse
|
7
|
A Compendium of the Principal Stationary Phases Used in Hydrophilic Interaction Chromatography: Where Have We Arrived? SEPARATIONS 2022. [DOI: 10.3390/separations10010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hydrophilic interaction liquid chromatography (HILIC) today is a well-known and largely applied technique to analyse polar compounds such as pharmaceuticals, metabolites, proteins, peptides, amino acids, oligonucleotides, and carbohydrates. Due to the large number of stationary phases employed for HILIC applications, this review aims to help the reader in choosing a proper stationary phase, which often represents the critical point for the success of a separation. A great offer is present for achiral applications in contrast to the chiral phases developed for HILIC enantioseparations. In the last case, up-to-date solutions are presented.
Collapse
|
8
|
Gong X, Liu W, Cao Y, Wang R, Liang N, Cao L, Li J, Tu P, Song Y. Integrated strategy for widely targeted metabolome characterization of Peucedani Radix. J Chromatogr A 2022; 1678:463360. [PMID: 35908514 DOI: 10.1016/j.chroma.2022.463360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Herbal medicines (HMs) are widely recognized as extremely complicated matrices, resulting in a great challenge for the existing analytical approaches to characterize the widely targeted metabolome. The primary obstacles include high-level structural diversity, broad concentration range, large polarity span, insufficient authentic compounds and frequent occurrences of isomers, even enantiomers. Here, we aimed to propose an integrated strategy being able to circumvent the technical barriers, and a well-known HM namely Peucedani Radix was employed to illustrate and justify the applicability. Regarding qualitative analysis, the hydrophilic metabolites were detected with HILIC-predictive multiple-reaction monitoring mode, and structurally identified by matching predefined identities with authentic compounds or information archived in relevant databases. After RPLC-MS/MS measurement, full collision energy ramp-MS2 spectrum in combination with quantum structural calculation was applied to confirmatively identify those less polar components, mainly angular-type pyranocoumarins (APs). For quantitative analysis, achiral-chiral RPLC/HILIC was configured for chromatographic separations because the analytes spanned a large polarity range and involved many enantiomers. A quasi-content concept was employed for comprehensively relative quantitation through constructing a so-called universal metabolome standard (UMS) sample and building calibration curves by assaying serial diluted UMS solutions. Consequently, high-confidence structural annotation and relatively quantitative analysis were achieved for 103 compounds, in total. After multivariate statistical analysis, some APs, e.g., (3'S)-praeruptorin A, (3'S)-praeruptorin B, (3'S)-praeruptorin E, as well as several primary metabolites were screened out as the prominent contributors for inter-batch variations. Together, current study shows a promising strategy enabling widely targeted metabolomics of, but not limited to, HMs.
Collapse
Affiliation(s)
- Xingcheng Gong
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongye Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Naiyun Liang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Libo Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Guo Y. A Survey of Polar Stationary Phases for Hydrophilic Interaction Chromatography and Recent Progress in Understanding Retention and Selectivity. Biomed Chromatogr 2022; 36:e5332. [PMID: 35001408 DOI: 10.1002/bmc.5332] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
Various polar stationary phases have become available for hydrophilic interaction chromatography (HILIC) and help drive continuous applications in biomedical, environmental and pharmaceutical areas in the past decade. Although the stationary phases for HILIC have been reviewed previously, it is an appropriate time to take another look at the progresses during the past five years. The current review provides an overview of the polar stationary phases commercially available for HILIC applications in an effort to assist scientists in selecting suitable columns. New types of stationary phase that were published in literature in the past five years are summarized and discussed. The trend in stationary phase research and development is also highlighted. Of particular interest is the experimental evidence for direct interactions of polar analytes with the ligands of the stationary phases under HILIC conditions. In addition, two different approaches have been developed to delineate the relative significance of the partitioning and adsorption mechanisms in HILIC, representing an important advancement in our understanding of the retention mechanisms in HILIC.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, New Jersey, USA
| |
Collapse
|
10
|
Bo C, Li Y, Liu B, Jia Z, Dai X, Gong B. Grafting copolymer brushes on polyhedral oligomeric silsesquioxanes silsesquioxane-decorated silica stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 2021; 1659:462627. [PMID: 34700183 DOI: 10.1016/j.chroma.2021.462627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022]
Abstract
A strategy is proposed to develop a stationary phase for hydrophilic interaction liquid chromatography (HILIC) using the synergistic effect of polyhedral oligomeric silsesquioxane (POSS) and copolymer brushes. Octahedral octa-aminopropylsisesquioxane (8NH2-POSS) was first bound to silica gel, followed by bromination to form a cubic initiator. Then, using acrylamide (AM) and dihydroxypropyl methacrylate (DPMA) as mixed monomers, surface initiated-atom transfer radical polymerization was conducted to prepare a stationary phase comprising cubic copolymer brushes with amide and diol groups. The characterization of the stationary phase confirmed the successful synthesis of Sil-NH2-POSS/Poly(AM-co-DPMA). The chromatographic properties were investigated using nucleosides, organic acids and β-agonists to find that our designed column has superior hydrophilic property, better separation performance compared with classical HILIC columns consisting of diol- or amino-modified silica. The systematic investigation of the retention mechanism and separation selectivity using various types of polar compounds revealed that Sil-NH2-POSS/Poly(AM-co-DPMA) follows a mixed-mode retention composed of HILIC and electrostatic interactions. Besides, it exhibits good column efficiency and stability. The role of 8NH2-POSS in the separation was evaluated by comparing the performance of Sil-NH2-POSS/Poly(AM-co-DPMA) and poly(AM-co-DPMA)-modified silica without 8NH2-POSS. In conclusion, our designed based on POSS and hydrophilic copolymer brushes can contribute to the development of HILIC separation materials with enhanced performance.
Collapse
Affiliation(s)
- Chunmiao Bo
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021,China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| | - Yan Li
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021,China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021,China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Zhuanhong Jia
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaojun Dai
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021,China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
11
|
Zhao X, Zhang H, Zhou X, Wang L, Wan L, Wu R. One-pot hydrothermal cross-linking preparation of poly(vinylpyrrolidone) immobilized silica stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2020; 1633:461656. [PMID: 33166745 DOI: 10.1016/j.chroma.2020.461656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/27/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022]
Abstract
Hydrothermally cross-linked polyvinylpyrrolidone (PVP) immobilized SiO2 stationary phase (CPVP-Sil) was prepared via a green and facile one-pot method which was demonstrated for hydrophilic interaction liquid chromatography (HILIC) as well as reverse phase chromatography(RP). A water or organic solvent-insoluble permanent CPVP immobilizing on the silica particle surface can be formed simply by dipping silica particles into PVP solution and low temperature hydrothermal treatment. The cross-linked PVP network coating on SiO2 endow it ring lactam functional groups which exhibited excellent separation ability of polar compounds by a typical HILIC retention mechanism at higher organic solvent contents (>55% ACN) and additionally polyvinyl groups for separation of alkylbenzenes in RP mode(<25% ACN). A high column efficiency of about 7 × 104 plates per meter was obtained for the test catechol compound. Remarkably, the CPVP-Sil packing materials showed good stability in acid (at pH 3.5) or basic (at pH 9.5) conditions, with 5400-fold column volumes and 3500-fold column volumes respectively.
Collapse
Affiliation(s)
- Xingyun Zhao
- CAS Key laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Zhang
- CAS Key laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyu Zhou
- CAS Key laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- CAS Key laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihong Wan
- CAS Key laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ren'an Wu
- CAS Key laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|