1
|
Dong L, Wu J, Zhu X. Preparation of amino acid chiral ionic liquid and visual chiral recognition of glutamine and phenylalanine enantiomers. Chirality 2024; 36:e23665. [PMID: 38570326 DOI: 10.1002/chir.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, 1H NMR, and 13C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.
Collapse
Affiliation(s)
- Luzheng Dong
- College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
| | - Jun Wu
- College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Liu H, Chen J, Chen M, Wang J, Qiu H. Recent development of chiral ionic liquids for enantioseparation in liquid chromatography and capillary electrophoresis: A review. Anal Chim Acta 2023; 1274:341496. [PMID: 37455089 DOI: 10.1016/j.aca.2023.341496] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Ionic liquids (ILs), which are salts in a molten state below 100 °C, have become a hot topic of research in various fields because of their negligible vapour pressure, high thermal stability, and tunable viscosity. Chiral ionic liquids (CILs) can be applied in chromatography and capillary electrophoresis fields to improve the performance of enantiomeric separation, such as chiral stationary phases (CSPs) and mobile phase additives in high-performance liquid chromatography (HPLC); CSPs in gas chromatography (GC); and background electrolyte additives (BGE), chiral ligands and chiral selectors (CSs) in capillary electrophoresis (CE). This review focuses on the applications of CILs in HPLC and CE for the separation of enantiomers in the past five years. The mechanism for separating enantiomers was explained, and the prospect of the application of CILs in chiral liquid chromatography (LC) and CE analysis was also discussed.
Collapse
Affiliation(s)
- Huifeng Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Study of Different Chiral Columns for the Enantiomeric Separation of Azoles Using Supercritical Fluid Chromatography. SEPARATIONS 2022. [DOI: 10.3390/separations10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The enantiomeric separation of antifungal compounds is an arduous task in pharmaceutical and biomedical fields due to the different properties that each diastereoisomer presents. The enantioseparation of a group of fungicides (sulconazole, bifonazole, triadimefon and triadimenol) using supercritical fluid chromatography was achieved in this work. For this goal, four different chiral columns based on polysaccharide derivatives, as well as the effect of different chromatographic parameters such as temperature, type and percentage of organic modifier (methanol, ethanol and isopropanol), were thoroughly investigated. The inversion of the elution order of enantiomers as a result of a change in the stationary phase or organic modifier was also evaluated by employing a circular dichroism detector. The best separation conditions, in terms of the enantioresolution and analysis time, were obtained with the Lux® Cellulose-2 column using isopropanol as the organic modifier.
Collapse
|
4
|
Liu J, Zhang J, Zhu D, Zhu X, Du Y, Ma X, Feng Z, Sun X, Xu H. Establishment and Molecular Modeling Study of Cyclodextrin-Based Synergistic Enantioseparation Systems with Three New Amino Acid Chiral Ionic Liquids as Additives in Capillary Electrophoresis. J Chromatogr Sci 2022; 60:984-990. [PMID: 35662327 DOI: 10.1093/chromsci/bmac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Chiral ionic liquids (CILs) have attracted more and more attention due to their superior performance as chiral additives in capillary electrophoresis. In this work, based on the cyclodextrin (CD) derivatives and three new amino acid CILs (trifluoroacetate-L-Hydroxyproline, nitric acid-L-Hydroxyproline and trifluoroacetate-L-threonine), the new synergistic systems were established for chiral drug separation. In contrast to the traditional single glucosyl-β-CD (Glu-β-CD) separation system, the CIL/Glu-β-CD synergistic systems achieved improved resolution of three model drug racemates. Some experimental variables, such as CIL concentration, Glu-β-CD concentration, buffer pH, applied voltage, and the type and proportion of organic modifier, were optimized in the trifluoroacetate-L-Hydroxyproline/Glu-β-CD synergistic system. In addition, the recognition process in the synergistic system was studied through the molecular modeling method.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dongyang Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinqi Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaodong Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hui Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Chiral ionic liquids synthesis and their applications in racemic drug separation and analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Quintas PY, Fiorentini EF, Llaver M, González RE, Wuilloud RG. State-of-the-art extraction and separation of enantiomers through the application of alternative solvents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Orlandini S, Hancu G, Szabó ZI, Modroiu A, Papp LA, Gotti R, Furlanetto S. New Trends in the Quality Control of Enantiomeric Drugs: Quality by Design-Compliant Development of Chiral Capillary Electrophoresis Methods. Molecules 2022; 27:7058. [PMID: 36296650 PMCID: PMC9607418 DOI: 10.3390/molecules27207058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Capillary electrophoresis (CE) is a potent method for analyzing chiral substances and is commonly used in the enantioseparation and chiral purity control of pharmaceuticals from different matrices. The adoption of Quality by Design (QbD) concepts in analytical method development, optimization and validation is a widespread trend observed in various analytical approaches including chiral CE. The application of Analytical QbD (AQbD) leads to the development of analytical methods based on sound science combined with risk management, and to a well understood process clarifying the influence of method parameters on the analytical output. The Design of Experiments (DoE) method employing chemometric tools is an essential part of QbD-based method development, allowing for the simultaneous evaluation of experimental parameters as well as their interaction. In 2022 the International Council for Harmonization (ICH) released two draft guidelines (ICH Q14 and ICH Q2(R2)) that are intended to encourage more robust analytical procedures. The ICH Q14 guideline intends to harmonize the scientific approaches for analytical procedures' development, while the Q2(R2) document covers the validation principles for the use of analytical procedures including the recent applications that require multivariate statistical analyses. The aim of this review is to provide an overview of the new prospects for chiral CE method development applied for the enantiomeric purity control of pharmaceuticals using AQbD principles. The review also provides an overview of recent research (2012-2022) on the applicability of CE methods in chiral drug impurity profiling.
Collapse
Affiliation(s)
- Serena Orlandini
- Department of Chemistry “U. Schiff”, University of Florence, 50019 Florence, Italy
| | - Gabriel Hancu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Zoltán-István Szabó
- Department of Pharmaceutical Industry and Management, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Adriana Modroiu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Lajos-Attila Papp
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sandra Furlanetto
- Department of Chemistry “U. Schiff”, University of Florence, 50019 Florence, Italy
| |
Collapse
|
8
|
Role of Ionic Liquids in Capillary Electrophoresis. ANALYTICA 2022. [DOI: 10.3390/analytica3020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ionic liquids are a very important class of compounds due to their remarkable properties and wide range of applications. On the other hand, capillary electrophoresis is also gaining importance in separation science because of its fast speed and inexpensive nature. The use of ionic liquids in capillary electrophoresis is gaining importance continuously. The present review article describes the applications of ionic liquids in capillary electrophoresis. This article also describes the general aspects of ionic liquids and capillary electrophoresis. The use of ionic liquids in capillary electrophoresis, optimization of separation, mechanism of separation, and toxicity of ionic liquids, as well as their future perspectives, have also been discussed. It was observed that not much work has been performed in capillary electrophoresis using ionic liquids. It was also realized that the use of ionic liquids in capillary electrophoresis could revolutionize analytical science. Briefly, there is a great need for the use of ionic liquids in capillary electrophoresis for better and more effective separation.
Collapse
|
9
|
Effect of ionic liquids and deep eutectic solvents on the enantiomeric separation of clopidogrel by cyclodextrin-electrokinetic chromatography. Quantitative analysis in pharmaceutical formulations using tetrabutylammonium l-aspartic acid combined with carboxymethyl-γ-cyclodextrin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
|
11
|
Greño M, Marina ML, Castro-Puyana M. Use of single and dual systems of γ-cyclodextrin or γ -cyclodextrin/L-Carnitine derived ionic liquid for the enantiomeric determination of cysteine by electrokinetic chromatography. A comparative study. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Grybinik S, Bosakova Z. An overview of chiral separations of pharmaceutically active substances by HPLC (2018-2020). MONATSHEFTE FUR CHEMIE 2021; 152:1033-1043. [PMID: 34456367 PMCID: PMC8382579 DOI: 10.1007/s00706-021-02832-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
This review provides a brief survey of chiral separation of pharmaceutically active substances published over the last 3 years (2018-2020). Chiral separation of drugs is an important area of research. The control of enantiomeric purity and determination of individual enantiomeric drug molecules is a necessity especially for clinical, analytical, and regulatory purposes. Among chromatographic resolution methods, high-performance liquid chromatography based on chiral stationary phases remains the most popular and effective method used for chiral separation of various drugs. In this review, attention is paid to several classes of chiral stationary phases that have been the most frequently used for drug enantioseparation during this period. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Sofiya Grybinik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Abstract
该文为2020年毛细管电泳(capillary electrophoresis, CE)技术年度回顾。归纳总结了以“capillary electrophoresis-mass spectrometry”或“capillary isoelectric focusing”或“micellar electrokinetic chromatography”或“capillary electrophoresis”为关键词在ISI Web of Science数据库中进行主题检索得到的2020年CE技术相关研究论文222篇,以及中文期刊《分析化学》和《色谱》中CE技术相关的研究论文37篇。对2020年影响因子(IF)≥5.0的Analytical Chemistry, Food Chemistry, Analytica Chimica Acta和Talanta等13本期刊的38篇文章报道的科研工作作了逐一介绍;对IF<5.0的期刊中CE技术报道较为集中的Journal of Chromatography A和Electrophoresis两本分析化学类期刊发表40篇文章中的代表性内容作了综合介绍;对重要的中文期刊《分析化学》出版的“核酸适配体专刊”和《色谱》出版的2期CE技术专刊所收录的37篇文章中的工作作了总体介绍。总体来说,2020年CE技术发展趋势仍以毛细管电泳-质谱(CE-MS)的新方法和新应用最为突出,主要集中在CE-MS与电化学检测、固相萃取以及多种毛细管电泳模式的联用方面,CE-MS接口相关的报道较前几年有所减少;常规CE技术则以胶束电动毛细管色谱(MEKC)在复杂样本分析、浓缩富集应用为主,尤其在食品和药品等复杂基质样本分析方面的报道较为集中;此外,我国CE相关领域专家学者的科研成果涵盖了CE在生命科学、临床医学、医药研发、环境科学、天然产物、食品分析等领域的应用,代表了国内CE科研应用水平和现状。
Collapse
|
14
|
Effects of amino acid-derived chiral ionic liquids on cyclodextrin-mediated capillary electrophoresis enantioseparations of dipeptides. J Chromatogr A 2021; 1652:462342. [PMID: 34174715 DOI: 10.1016/j.chroma.2021.462342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
The synergistic effect of chiral ionic liquids composed of tetraalkylammonium ions and the amino acids Asn, Asp or Pro on the enantioseparations of dipeptides mediated by β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin in capillary electrophoresis was studied. Addition of a chiral ionic liquid resulted in a concentration-dependent increase in the enantioresolutions compared to the sole presence of a cyclodextrin in the background electrolyte. The extent varied with the tetraalkylammonium cation (tetramethylammonium versus tetrabutylammonium) as well as the amino acid component of the ionic liquid. The presence of a chiral ionic liquid did not counteract the pH-dependent reversal of the enantiomer migration order of the dipeptides Ala-Phe, Ala-Tyr and Phe-Phe when increasing the pH of the background electrolyte from 2.5 to 3.5. Comparing the effect of a chiral ionic liquid based on Asp with the addition of equimolar concentrations of the individual components of the ionic liquid, a diverse picture was observed. In some cases, higher resolution values were obtained with the chiral ionic liquid, while for other cases superior enantioseparations were obtained upon separate addition of the amino acid component and a tetraalkylammonium chloride. With regard to the stereochemistry of the amino acid, a superior effect was typically observed using the l-configured amino acid, but in some cases higher resolution values were found in the presence of d-Asp. The rationale for the diverse observations is not obvious and may be due to the zwitterionic nature of analytes as well as the amino acid component of the chiral ionic liquid.
Collapse
|
15
|
El Deeb S, Silva CF, Junior CSN, Hanafi RS, Borges KB. Chiral Capillary Electrokinetic Chromatography: Principle and Applications, Detection and Identification, Design of Experiment, and Exploration of Chiral Recognition Using Molecular Modeling. Molecules 2021; 26:2841. [PMID: 34064769 PMCID: PMC8151978 DOI: 10.3390/molecules26102841] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
This work reviews the literature of chiral capillary electrokinetic chromatography from January 2016 to March 2021. This is done to explore the state-of-the-art approach and recent developments carried out in this field. The separation principle of the technique is described and supported with simple graphical illustrations, showing migration under normal and reversed polarity modes of the separation voltage. The most relevant applications of the technique for enantioseparation of drugs and other enantiomeric molecules in different fields using chiral selectors in single, dual, or multiple systems are highlighted. Measures to improve the detection sensitivity of chiral capillary electrokinetic chromatography with UV detector are discussed, and the alternative aspects are explored, besides special emphases to hyphenation compatibility to mass spectrometry. Partial filling and counter migration techniques are described. Indirect identification of the separated enantiomers and the determination of enantiomeric migration order are mentioned. The application of Quality by Design principles to facilitate method development, optimization, and validation is presented. The elucidation and explanation of chiral recognition in molecular bases are discussed with special focus on the role of molecular modeling.
Collapse
Affiliation(s)
- Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Camilla Fonseca Silva
- Departamento de Ciências Naturais, Campus Dom Bosco, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil; (C.F.S.); (C.S.N.J.); (K.B.B.)
| | - Clebio Soares Nascimento Junior
- Departamento de Ciências Naturais, Campus Dom Bosco, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil; (C.F.S.); (C.S.N.J.); (K.B.B.)
| | - Rasha Sayed Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Campus Dom Bosco, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil; (C.F.S.); (C.S.N.J.); (K.B.B.)
| |
Collapse
|
16
|
Tetraalkylammonium-l-tartrate ionic liquids as sole chiral selectors in capillary electrophoresis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Krait S, Konjaria ML, Scriba GKE. Advances of capillary electrophoresis enantioseparations in pharmaceutical analysis (2017-2020). Electrophoresis 2021; 42:1709-1725. [PMID: 33433919 DOI: 10.1002/elps.202000359] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Capillary electrophoresis is a powerful technique for the analysis of polar chiral compounds and has been widely accepted for analytical enantioseparations of drug compounds in pharmaceuticals and biological media. In addition, many mechanistic studies have been conducted in an attempt to rationalize enantioseparations in combination with spectroscopic and computational techniques. The present review will focus on recent examples of mechanistic aspects and summarize recent applications of stereoselective pharmaceutical and biomedical analysis published between January 2017 and November 2020. Various separation modes including electrokinetic chromatography in combination with several detection modes including laser-induced fluorescence, mass spectrometry and contactless conductivity detection will be discussed. A general trend also observed in other analytical techniques is the application of quality by design principles in method development and optimization.
Collapse
Affiliation(s)
- Sulaiman Krait
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| | - Mari-Luiza Konjaria
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| | - Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
18
|
Yu RB, Quirino JP. Ionic liquids in electrokinetic chromatography. J Chromatogr A 2020; 1637:461801. [PMID: 33385743 DOI: 10.1016/j.chroma.2020.461801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/22/2023]
Abstract
There is an interest in the application of ionic liquids as additives into the separation media to improve achiral and chiral separations in electrokinetic chromatography (EKC). This review will critically discuss the developments on the use of ionic liquids in the different modes of EKC during the last five years (2015-mid 2020). A healthy number of 48 research articles searched through Scopus were categorised into two: ionic liquids as sole pseudophase (micelles, microemulsions, ligand exchange pseudophase or molecular pseudophase) and ionic liquids with pseudophase (achiral or chiral). More than half of the papers dealt with chiral separations that were mostly facilitated by another additive or pseudophase. The role of ionic liquids for improvement of separations were analysed, and we provided some recommendations for further investigations. Finally, the use of ionic liquids in different on-line sample concentration or stacking methods (i.e., field enhancement and sweeping) was briefly discussed.
Collapse
Affiliation(s)
- Raymond B Yu
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
19
|
Lee JU, Lee SS, Lee S, Oh HB. Noncovalent Complexes of Cyclodextrin with Small Organic Molecules: Applications and Insights into Host-Guest Interactions in the Gas Phase and Condensed Phase. Molecules 2020; 25:molecules25184048. [PMID: 32899713 PMCID: PMC7571109 DOI: 10.3390/molecules25184048] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) have drawn a lot of attention from the scientific communities as a model system for host–guest chemistry and also due to its variety of applications in the pharmaceutical, cosmetic, food, textile, separation science, and essential oil industries. The formation of the inclusion complexes enables these applications in the condensed phases, which have been confirmed by nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and other methodologies. The advent of soft ionization techniques that can transfer the solution-phase noncovalent complexes to the gas phase has allowed for extensive examination of these complexes and provides valuable insight into the principles governing the formation of gaseous noncovalent complexes. As for the CDs’ host–guest chemistry in the gas phase, there has been a controversial issue as to whether noncovalent complexes are inclusion conformers reflecting the solution-phase structure of the complex or not. In this review, the basic principles governing CD’s host–guest complex formation will be described. Applications and structures of CDs in the condensed phases will also be presented. More importantly, the experimental and theoretical evidence supporting the two opposing views for the CD–guest structures in the gas phase will be intensively reviewed. These include data obtained via mass spectrometry, ion mobility measurements, infrared multiphoton dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Jae-ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
| | - Sung-Sik Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Korea;
| | - Sungyul Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Korea;
- Correspondence: (S.L.); (H.B.O.); Tel.: +82-31-201-2423 (S.L.); +82-2-705-8444 (H.B.O.)
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
- Correspondence: (S.L.); (H.B.O.); Tel.: +82-31-201-2423 (S.L.); +82-2-705-8444 (H.B.O.)
| |
Collapse
|