1
|
Schackmuth M, Kerrigan S. Identification of fentanyl analogs and potential biomarkers in urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography-quadrupole/time of flight mass spectrometry (LC-Q/TOF-MS). J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124303. [PMID: 39332102 DOI: 10.1016/j.jchromb.2024.124303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024]
Abstract
Novel synthetic opioids are a class of drugs abused for their potent analgesic effect and are responsible for many fatal intoxications, particularly within the United States. A targeted assay was developed and validated using LC-MS/MS, capable of identifying nineteen fentalogs. Solid phase extraction was used to isolate analytes of interest from urine. Limits of detection ranged from 0.05 to 0.1 ng/mL and the limit of quantitation was 0.5 ng/mL. Extraction efficiencies using the optimized procedure were 77-88 % for all targeted species. Bias, precision, matrix effects and interferences were within acceptable thresholds for all analytes. The validated assay was used to identify analytes of interest from thirty-seven individuals that had used fentanyl and related substances. In addition to quantitative analyses, a non-targeted liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q/TOF-MS) assay was also used to identify additional substances and potential biomarkers. Additional N-oxide and N-dealkylated species were identified using this approach, and the potential for biomarker use is presented, given the stability of some analytes within this class.
Collapse
Affiliation(s)
- Madison Schackmuth
- Department of Forensic Science, Sam Houston State University, Box 2525, 1003 Bowers Blvd, Huntsville, TX 77341, United States
| | - Sarah Kerrigan
- Department of Forensic Science, Sam Houston State University, Box 2525, 1003 Bowers Blvd, Huntsville, TX 77341, United States.
| |
Collapse
|
2
|
Gutiérrez-Martín D, Restrepo-Montes E, Golovko O, López-Serna R, Aalizadeh R, Thomaidis NS, Marquès M, Gago-Ferrero P, Gil-Solsona R. Comprehensive profiling and semi-quantification of exogenous chemicals in human urine using HRMS-based strategies. Anal Bioanal Chem 2023; 415:7297-7313. [PMID: 37946034 PMCID: PMC10684428 DOI: 10.1007/s00216-023-04998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Chemicals infiltrate our daily experiences through multiple exposure pathways. Human biomonitoring (HBM) is routinely used to comprehensively understand these chemical interactions. Historically, HBM depended on targeted screening methods limited to a relatively small set of chemicals with triple quadrupole instruments typically. However, recent advances in high-resolution mass spectrometry (HRMS) have facilitated the use of broad-scope target, suspect, and non-target strategies, enhancing chemical exposome characterization within acceptable detection limits. Despite these advancements, establishing robust and efficient sample treatment protocols is still essential for trustworthy broad-range chemical analysis. This study sought to validate a methodology leveraging HRMS-based strategies for accurate profiling of exogenous chemicals and related metabolites in urine samples. We evaluated five extraction protocols, each encompassing various chemical classes, such as pharmaceuticals, plastic additives, personal care products, and pesticides, in terms of their extraction recoveries, linearity, matrix effect, sensitivity, and reproducibility. The most effective protocol was extensively validated and subsequently applied to 10 real human urine samples using wide-scope target analysis encompassing over 2000 chemicals. We successfully identified and semi-quantified a total of 36 chemicals using an ionization efficiency-based model, affirming the methodology's robust performance. Notably, our results dismissed the need for a deconjugation step, a typically labor-intensive and time-consuming process.
Collapse
Affiliation(s)
- Daniel Gutiérrez-Martín
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), 08034, Barcelona, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina S/N, 47011, Valladolid, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Esteban Restrepo-Montes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), 08034, Barcelona, Spain
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Rebeca López-Serna
- Institute of Sustainable Processes (ISP), Dr. Mergelina S/N, 47011, Valladolid, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Montse Marquès
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant LLorenç 21, 43201, Reus, Catalonia, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), 08034, Barcelona, Spain
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), 08034, Barcelona, Spain.
| |
Collapse
|
3
|
Lesne E, Muñoz-Bartual M, Esteve-Turrillas FA. Determination of synthetic hallucinogens in oral fluids by microextraction by packed sorbent and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2023:10.1007/s00216-023-04751-2. [PMID: 37219582 DOI: 10.1007/s00216-023-04751-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
A fast and simple procedure based on microextraction by packed sorbent (MEPS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the simultaneous quantification of 28 synthetic hallucinogens in oral fluids, including lysergic acid diethylamide and substances from NBOMe, NBOH, NBF, 2C, and substituted amphetamine categories. Extraction conditions such as type of sorbent, sample pH, number of charge/discharge cycles, and elution volume were studied. Hallucinogenic compounds were extracted from oral fluid samples using C18 MEPS, loading with 100 μL sample (adjusted to pH 7) in 3 cycles, washing with 100 μL deionized water, and eluting with 50 μL methanol in 1 cycle, giving quantitative recoveries and no significant matrix effects. Limits of detection from 0.09 to 1.22 μg L-1; recoveries from 80 to 129% performed in spiked oral fluid samples at 20, 50, and 100 μg L-1; and high precision with relative standard deviations lower than 9% were obtained. The proposed methodology was demonstrated to be appropriate for the simple and sensitive determination of NBOMe derivates and other synthetic hallucinogenic substances in oral fluid samples.
Collapse
Affiliation(s)
- Evan Lesne
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner St., 46100, Burjassot, Spain
| | - Miguel Muñoz-Bartual
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner St., 46100, Burjassot, Spain
| | | |
Collapse
|
4
|
Calero-Cañuelo C, Casado-Carmona FA, Lucena R, Cárdenas S. Mixed-mode cationic exchange sorptive tapes combined with direct infusion mass spectrometry for determining opioids in saliva samples. J Chromatogr A 2023; 1702:464097. [PMID: 37244164 DOI: 10.1016/j.chroma.2023.464097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
This article describes the synthesis of mixed-mode cationic exchange (MCX) tapes as sorptive phases in bioanalysis, and it faces the determination of methadone and tramadol in saliva as the model analytical problem. The tapes are synthesized using aluminum foil as substrate, which is subsequently covered with double-sided adhesive tape where the MCX particles (ca. 1.4 ± 0.2 mg) finally adhere. MCX particles allow the extraction of the analytes at the physiological pH, where both drugs are positively charged, minimizing the potential co-extraction of endogenous matrix compounds. The extraction conditions were studied considering the main variables (e.g. ionic strength, extraction time, sample dilution). Under the optimum conditions and using direct infusion mass spectrometry as the instrumental technique, detection limits as low as 3.3 μg·L-1 were obtained. The precision calculated at three different levels, and expressed as relative standard deviation, was better than 3.8%. The accuracy, expressed as relative recoveries, ranged from 83 to 113%. The method was finally applied to determine tramadol in saliva samples from patients under medical treatment. This approach opens the door to easily preparing sorptive tapes based on commercial (or ad-hoc synthesized) sorbent particles.
Collapse
Affiliation(s)
- Carlos Calero-Cañuelo
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Francisco Antonio Casado-Carmona
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| |
Collapse
|
5
|
Cheng JYK, Hui JWS, Chan WS, So MH, Hong YH, Leung WT, Ku KW, Yeung HS, Lo KM, Fung KM, Ip CY, Dao KL, Cheung BKK. Interpol review of toxicology 2019-2022. Forensic Sci Int Synerg 2022; 6:100303. [PMID: 36597440 PMCID: PMC9799715 DOI: 10.1016/j.fsisyn.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jack Yuk-ki Cheng
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | | - Wing-sum Chan
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Man-ho So
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Yau-hin Hong
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Wai-tung Leung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Ka-wai Ku
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Hoi-sze Yeung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kam-moon Lo
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kit-mai Fung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Chi-yuen Ip
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kwok-leung Dao
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | |
Collapse
|
6
|
Shan X, Cao C, Yang B. Analytical Approaches for the Determination of Buprenorphine, Methadone and Their Metabolites in Biological Matrices. Molecules 2022; 27:molecules27165211. [PMID: 36014451 PMCID: PMC9415157 DOI: 10.3390/molecules27165211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The abuse of buprenorphine and methadone has grown into a rising worldwide issue. After their consumption, buprenorphine, methadone and their metabolites can be found in the human organism. Due to the difficulty in the assessment of these compounds by routine drug screening, the importance of developing highly sensitive analytical approaches is undeniable. Liquid chromatography tandem mass spectrometry is the preferable technique for the determination of buprenorphine, methadone and their metabolites in biological matrices including urine, plasma, nails or oral fluids. This research aims to review a critical discussion of the latest trends for the monitoring of buprenorphine, methadone and their metabolites in various biological specimens.
Collapse
|
7
|
Simão AY, Monteiro C, Marques H, Rosado T, Margalho C, Barroso M, Andraus M, Gallardo E. Analysis of opiates in urine using microextraction by packed sorbent and gas Chromatography- Tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123361. [PMID: 35849978 DOI: 10.1016/j.jchromb.2022.123361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022]
Abstract
Opiates recreational consumption has always been a concern in society, public health, and in clinical toxicology analysis. The aim of this study was to develop and fully validate an analytical method, which was simple and rapid for the determination of tramadol, codeine, morphine, 6- acetylcodeine, 6-monoacetylmorphine and fentanyl using gas chromatography coupled to tandem mass spectrometry. The procedure includes the use of microextraction by packed sorbent for sample clean-up. A mixed mode sorbent was used, allowing the minimal use of solvents. The method was validated in urine samples, with the ability to detect and quantify all analytes with satisfactory linearity (in the range of 1 - 1000 ng/mL for all analytes, except for fentanyl (10-1000 ng/mL)). Extraction efficiency varied from 17 to 107%, which did not impair sensitivity, taking into account the low LLOQs obtained (1 ng/ mL for all analytes; and 10 ng/mL for fentanyl). The developed procedure proved to be fast, selective, and accurate for use in routine analysis, with a low volume of sample (250 µL).
Collapse
Affiliation(s)
- Ana Y Simão
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI) Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Catarina Monteiro
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI) Covilhã, Portugal
| | - Hernâni Marques
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI) Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI) Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal; C4 - Centro de Competências em Cloud Computing da Universidade da Beira Interior, Covilhã, Portugal
| | - Cláudia Margalho
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses - Delegação do Centro, Coimbra, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses - Delegação do Sul, Lisboa, Portugal
| | | | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI) Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
8
|
Zhao Q, Wang R, Liang C, Chen Y, Sheng Z, Xu Z, Zhang Y. Extension of the Temporal Window for the Determination of Alpha-Methylthiofentanyl and Thiofentanyl in Rat Urine by Monitoring the Metabolite Norfentanyl Using Online Solid-Phase Extraction (SPE) Coupled with Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC–MS/MS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2087229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Qingjia Zhao
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai, China
| | - Rong Wang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai, China
| | - Chen Liang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai, China
| | - Yao Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai, China
- Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai, China
| | - Zhenhai Sheng
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai, China
| | - Zhiru Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai, China
- Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai, China
| | - Yurong Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai, China
| |
Collapse
|
9
|
Zhang S, Hua Z, Yao W, Lü T, Zhang D, Zhao Q, Li J, Zhao H. Preparation of bamboo-derived magnetic biochar for solid-phase microextraction of fentanyls from urine. J Sep Sci 2022; 45:1766-1773. [PMID: 35261155 DOI: 10.1002/jssc.202200049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/11/2022]
Abstract
In this study, a biochar-based magnetic solid-phase microextraction method, coupled with liquid chromatography-mass spectrometry (LC/MS), was developed for analyzing fentanyl analogs from urine sample. Magnetic biochar was fabricated through an one-step pyrolysis carbonization and magnetization process, followed by an alkali treatment. In order to achieve desired extraction efficiency, feed stocks (wood and bamboo) and different pyrolysis temperatures (300-700 °C) were optimized. The magnetic bamboo biochar pyrolyzed at 400°C was found to have the greatest potential for extraction of fentanyls, with enrichment factors ranging from 58.9 to 93.7, presumably due to H-bonding and π- π interactions between biochar and fentanyls. Various extraction parameters, such as type and volume of desorption solvent, pH, extraction time were optimized, respectively, to achieve the highest extraction efficiency for the target fentanyls. Under optimized conditions, the developed method was found to have detection limits of 3.1-9.4 ng/L, a linear range of 0.05-10 μg/L, good precisions (1.9-9.4% for intra-batch, 2.9-9.9% for inter-batch), and satisfactory recoveries (82.0-111.3%). The developed method by using magnetic bamboo biochar as adsorbent exhibited to be an efficient and promising pretreatment procedure and could potentially be applied for drug analysis in biological samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Suling Zhang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Ziluo Hua
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310053, China
| | - Ting Lü
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Dong Zhang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qingwei Zhao
- Department of Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianhong Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528011, China
| | - Hongting Zhao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528011, China
| |
Collapse
|
10
|
Ares-Fuentes AM, Lorenzo RA, Fernández P, Fernández AM, Furton KG, Kabir A, Carro AM. Determination of synthetic opioids in oral fluid samples using fabric phase sorptive extraction and gas chromatography-mass spectrometry. J Chromatogr A 2022; 1663:462768. [PMID: 34974368 DOI: 10.1016/j.chroma.2021.462768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023]
Abstract
New psychoactive substances (NPS) continue to emerge in the drug market every year, becoming a global threat to public health and safety. These compounds are mostly synthetic cannabinoids and designer cathinones. However, synthetic opioids have appeared on the recreational drug markets in recent years, particularly fentanyl and its derivatives ("fentanyls"). Fentanyl and its analogs are related to harmful intoxications and an increase in opioid-related mortality in many countries, such as in the United States and Europe in the last years. Taking the drug related global crisis into consideration, this work developed and validated an effective and sensitive method based on fabric phase sorptive extraction (FPSE) followed by gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of 11 fentanyl analogs in oral fluid samples. The extraction was carried out using a sol-gel Carbowax 20 M sorbent immobilized on 100% cellulose fabric substrate and using ethyl acetate as the desorption solvent. The limits of detection (LODs) and quantification (LOQs) ranged from 1 to 15 ng mL-1 and 5 to 50 ng mL-1, respectively. Intra-day and inter-day precision were found within 8.2% and 8.6%, respectively, while accuracy ranged from -5.5 to 9.1%, in accordance with the established criteria. The absolute recovery values were in the range of 94.5%-109.1%. The validated method demonstrated its great potential to detect and quantify fentanyl analogs in possible forensic work and off-site analysis in road traffic cases.
Collapse
Affiliation(s)
- Ana M Ares-Fuentes
- Department of Analytical Chemistry, Nutrición y Bromatología, Faculty of Chemistry and Health Research, Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Avda de las Ciencias S/N, Santiago de Compostela E-15782, Spain
| | - Rosa A Lorenzo
- Department of Analytical Chemistry, Nutrición y Bromatología, Faculty of Chemistry and Health Research, Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Avda de las Ciencias S/N, Santiago de Compostela E-15782, Spain
| | - Purificación Fernández
- Institute of Legal Medicine, Forensic Toxicology Service, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | | | - Kenneth G Furton
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL 33199, USA
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL 33199, USA; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Antonia M Carro
- Department of Analytical Chemistry, Nutrición y Bromatología, Faculty of Chemistry and Health Research, Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Avda de las Ciencias S/N, Santiago de Compostela E-15782, Spain; Department of Analytical Chemistry, Nutrición y Bromatología, Faculty of Chemistry. Health Research, Institute of Santiago de Compostela (IDIS). Instituto de Materiais (iMATUS). University of Santiago de Compostela, Avda de las Ciencias S/N, Santiago de Compostela E-15782, Spain.
| |
Collapse
|
11
|
Novel Applications of Microextraction Techniques Focused on Biological and Forensic Analyses. SEPARATIONS 2022. [DOI: 10.3390/separations9010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In recent years, major attention has been focused on microextraction procedures that allow high recovery of target analytes, regardless of the complexity of the sample matrices. The most used techniques included liquid-liquid extraction (LLE), solid-phase extraction (SPE), solid-phase microextraction (SPME), dispersive liquid-liquid microextraction (DLLME), microextraction by packed sorbent (MEPS), and fabric-phase sorptive extraction (FPSE). These techniques manifest a rapid development of sample preparation techniques in different fields, such as biological, environmental, food sciences, natural products, forensic medicine, and toxicology. In the biological and forensic fields, where a wide variety of drugs with different chemical properties are analyzed, the sample preparation is required to make the sample suitable for the instrumental analysis, which often includes gas chromatography (GC) and liquid chromatography (LC) coupled with mass detectors or tandem mass detectors (MS/MS). In this review, we have focused our attention on the biological and forensic application of these innovative procedures, highlighting the major advantages and results that have been accomplished in laboratory and clinical practice.
Collapse
|
12
|
Daryanavard SM, Zolfaghari H, Abdel-Rehim A, Abdel-Rehim M. Recent applications of microextraction sample preparation techniques in biological samples analysis. Biomed Chromatogr 2021; 35:e5105. [PMID: 33660303 DOI: 10.1002/bmc.5105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Analysis of biological samples is affected by interfering substances with chemical properties similar to those of the target analytes, such as drugs. Biological samples such as whole blood, plasma, serum, urine and saliva must be properly processed for separation, purification, enrichment and chemical modification to meet the requirements of the analytical instruments. This causes the sample preparation stage to be of undeniable importance in the analysis of such samples through methods such as microextraction techniques. The scope of this review will cover a comprehensive summary of available literature data on microextraction techniques playing a key role for analytical purposes, methods of their implementation in common biological samples, and finally, the most recent examples of application of microextraction techniques in preconcentration of analytes from urine, blood and saliva samples. The objectives and merits of each microextration technique are carefully described in detail with respect to the nature of the biological samples. This review presents the most recent and innovative work published on microextraction application in common biological samples, mostly focused on original studies reported from 2017 to date. The main sections of this review comprise an introduction to the microextraction techniques supported by recent application studies involving quantitative and qualitative results and summaries of the most significant, recently published applications of microextracion methods in biological samples. This article considers recent applications of several microextraction techniques in the field of sample preparation for biological samples including urine, blood and saliva, with consideration for extraction techniques, sample preparation and instrumental detection systems.
Collapse
Affiliation(s)
| | - Hesane Zolfaghari
- Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Mohamed Abdel-Rehim
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
13
|
Jung J, Kolodziej A, Pape E, Bisch M, Javot L, Gibaja V, Jouzeau JY, Scala-Bertola J, Gambier N. Multiplex detection of 14 fentanyl analogues and U-47700 in biological samples: Application to a panel of French hospitalized patients. Forensic Sci Int 2020; 317:110437. [DOI: 10.1016/j.forsciint.2020.110437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022]
|
14
|
Ares-Fuentes AM, Lorenzo RA, Fernández P, Carro AM. An analytical strategy for designer benzodiazepines and Z-hypnotics determination in plasma samples using ultra-high performance liquid chromatography/tandem mass spectrometry after microextraction by packed sorbent. J Pharm Biomed Anal 2020; 194:113779. [PMID: 33279303 DOI: 10.1016/j.jpba.2020.113779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/15/2020] [Accepted: 11/15/2020] [Indexed: 01/19/2023]
Abstract
The illicit market for new psychoactive substances (NPS) is continuously growing. Designer benzodiazepines (DBZD) and Z-hypnotics are increasingly being used for self-medication or recreational purposes. The limited regulation and little biological information available about NPS have raised the need for analytical methods capable of extracting and quantifying them in human biological fluids. In this work, a procedure based on microextraction by packed sorbent (MEPS) in combination with ultra-high performance liquid chromatography and tandem mass spectrometry (UHPLC-MS/MS) has been developed to determine the designer benzodiazepines (clonazolam, deschloroetizolam, nifoxipam, flubromazolam and meclonazepam), and the Z-hypnotics (zolpidem, zaleplon and zopiclone) in plasma. A 3342//16 asymmetric screening design was used to study extraction variables such as the type and volume of eluent, pH, number of extraction cycles, volume of washing solvent and type of sorbent. The ensuing analytical method was validated in terms of linearity by standard addition calibration curves at eight different analyte concentration levels from 0.5-500 ng mL-1. R2 values, limits of detection (LOD) and limits of quantification (LOQ) fell in the ranges 0.9900-0.9988, 0.5-5 ng mL-1 and 1-10 ng mL-1. Intra and interday precision expressed as relative standard deviations, were < 10.6 % and process efficiency ranged from 63 to 117 % for the quality control samples. The proposed method detected zolpidem and various other benzodiazepines in plasma samples from overdoses cases.
Collapse
Affiliation(s)
- A M Ares-Fuentes
- Department of Analytical Chemistry, Faculty of Chemistry and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - R A Lorenzo
- Department of Analytical Chemistry, Faculty of Chemistry and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - P Fernández
- Institute of Forensic Sciences, Forensic Toxicology Service, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A M Carro
- Department of Analytical Chemistry, Faculty of Chemistry and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|