1
|
Zhou W, Hu K, Wang Y, Jiang RW, Pawliszyn J. Embedding Mixed Sorbents in Binder: Solid-Phase Microextraction Coating with Wide Extraction Coverage and Its Application in Environmental Water Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:771-779. [PMID: 38127806 DOI: 10.1021/acs.est.3c07244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Solid-phase microextraction (SPME) is a simple and highly effective sample-preparation technique for water analysis. However, the extraction coverage of a given SPME device with a specific coating can be an issue when analyzing multiple environmental contaminants. Therefore, instead of synthesizing one sorbent material with dual or multiple functions, we investigated a new strategy of preparing SPME blades using a homogeneous slurry made by mixing three different sorbent particles─namely, hydrophobic/lipophilic balanced (HLB), HLB-weak cationic exchange (HLB-WCX), and HLB-weak anionic exchange (HLB-WAX)─with a polyacrylonitrile (PAN) binder. The developed coating is matrix compatible, as the binder functions not only as a glue for immobilizing the sorbent particles but also as a porous filter, which only allows small molecules to enter the pores and interact with the particles, thus avoiding contamination from large elements. The results confirmed that the proposed mixed-coating SPME device provides good extraction performance for polar and nonpolar as well as positively and negatively charged compounds. Based on this device, three comprehensive analytical methodologies─high-throughput SPME-LC-MS/MS (for the quantitative analysis of targeted drugs of abuse and artificial sweeteners), in-bottle SPME-LC-high resolution MS (HRMS) (for the untargeted screening of organic contaminants), and on-site drone sampling SPME-LC-HRMS (for on-site sampling and untargeted screening)─were developed for use in environmental water analysis. The resultant data confirm that the proposed strategies enable comprehensive water quality assessment by using a single SPME device.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kai Hu
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yuanpeng Wang
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Runshan Will Jiang
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Mao Z, Chen J, Jiang D, Zhao N, Qin Y, Mao X, Fang F, Ma P. Itaconic Acid-Based Organic-Polymer Monolithic Column for Hydrophilic Capillary Electrochromatography and Its Application in Pharmaceutical Analysis. ACS OMEGA 2024; 9:1554-1561. [PMID: 38222631 PMCID: PMC10785275 DOI: 10.1021/acsomega.3c08031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Itaconic acid is an excellent hydrophilic monomer owing to the dicarboxylic group possessing strong polarity. This study reports on the preparation of a new organic-polymer monolithic column poly(itaconic acid-co-3-(acryloyloxy)-2-hydroxypropyl methacrylate) (poly(IA-co-AHM)) featuring excellent hydrophilic chromatography ability and its application in pharmaceutical analysis. The monolithic column was successfully synthesized by using the monomer itaconic acid and the cross-linker AHM through an in situ copolymerization method. Optical microscopy, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were employed for the characterization of the poly(IA-co-AHM) monolithic column, and all of these demonstrated that the prepared itaconic acid-based monolithic column exhibited satisfactory permeability and a homogeneous porous structure. Owing to the carboxylic groups of itaconic acid, a cathodic electroosmotic flow (EOF) was generated on the itaconic acid-based monolithic column among the pH ranges of the mobile phase from 4.0 to 9.0. Depending on the powerful hydrophilic interactions, different kinds of polar substances, including thioureas, nucleoside drugs, sulfonamides, and polypeptides, were separated efficiently by the itaconic acid-based monoliths poly(IA-co-AHM). The separations of polar compounds were successfully realized, even at a lower level of 50% acetonitrile content on this monolithic column. The highest column efficiencies corresponding to N,N'-dimethylthiourea and idoxuridine were 102 720 and 124 267 N/m, respectively. The poly(IA-co-AHM) monolithic column displayed excellent repeatability, whose relative standard deviations (RSDs) of the retention time and peak area were both lower than 5.0%. All experimental results demonstrated that the new itaconic acid-functionalized monolithic column was greatly appropriate to separate the polar compounds under the HILIC mode.
Collapse
Affiliation(s)
- Zhenkun Mao
- Department
of Pharmacy, Henan Provincial People’s
Hospital, Zhengzhou 450003, Henan, China
- Department
of Pharmacy, People’s Hospital of
Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Jinxiu Chen
- Department
of Pharmacy, Henan Provincial People’s
Hospital, Zhengzhou 450003, Henan, China
- Department
of Pharmacy, People’s Hospital of
Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Dandan Jiang
- Department
of Pharmacy, Henan Provincial People’s
Hospital, Zhengzhou 450003, Henan, China
- Department
of Pharmacy, People’s Hospital of
Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Ningmin Zhao
- Department
of Pharmacy, Henan Provincial People’s
Hospital, Zhengzhou 450003, Henan, China
- Department
of Pharmacy, People’s Hospital of
Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Yinhui Qin
- Department
of Pharmacy, Henan Provincial People’s
Hospital, Zhengzhou 450003, Henan, China
- Department
of Pharmacy, People’s Hospital of
Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xiangju Mao
- Zhengzhou
Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou 450006, China
| | - Fengqin Fang
- Department
of Pharmacy, Henan Provincial People’s
Hospital, Zhengzhou 450003, Henan, China
- Department
of Pharmacy, People’s Hospital of
Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Peizhi Ma
- Department
of Pharmacy, Henan Provincial People’s
Hospital, Zhengzhou 450003, Henan, China
- Department
of Pharmacy, People’s Hospital of
Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China
| |
Collapse
|
3
|
Liu L, Lu S, Liu H, Bai L. A simple and efficient method for the extraction and purification of tuberostemonine from Stemonae Radix using an amide group-based monolithic cartridge. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Lei X, Zhang B, Zhang Y, Huang T, Tang F, Wu X. In situ photoinitiated fabrication of phosphorylcholine-functionalized polyhedral oligomeric silsesquioxane hybrid monolithic column for mixed-mode capillary electrochromatography. Analyst 2022; 147:2253-2263. [DOI: 10.1039/d2an00195k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A phosphorylcholine-functionalized POSS hybrid monolithic column was synthesized via UV curing. It exhibits hydrophilic interaction and weak cation exchange chromatography retention mechanism for the separation of typical polar and charged compounds.
Collapse
Affiliation(s)
- Xiaoyun Lei
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bingyu Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Fengxiang Tang
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xiaoping Wu
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
5
|
Rapid polymerization of polyhedral oligomeric siloxane-based zwitterionic sulfoalkylbetaine monolithic column in ionic liquid for hydrophilic interaction capillary electrochromatography. J Chromatogr A 2021; 1659:462651. [PMID: 34749184 DOI: 10.1016/j.chroma.2021.462651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
A novel polyhedral oligomeric siloxane (POSS)-based zwitterionic monolithic capillary column was prepared via one-pot polymerization in ionic liquid porogen, using N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine (DMMSA) and methacrylic ethyl trimethylammonium chloride (META) as binary functional monomers, and methacryl substituted POSS as cross-linker. The pore structure, permeability and homogeneity were well tuned by optimizing the polymerization conditions. The resultant monolith was characterized by scanning electron microscopy, nitrogen adsorption/desorption isotherm and Fourier transform infrared spectroscopy. The incorporation of zwitterionic ligand (DMMSA), quaternary amine group (META) and rigid POSS skeleton endows the hybrid organic-silica monolith with high hydrophilicity, electrostatic interaction and good mechanical stability, as well as a tunable electroosmotic flow over wide pH range. A close investigation of capillary electrochromatographic separations of different types of polar compounds such as bases, nucleosides and benzoic acids on such stationary phase exhibited a retention independent column efficiency up to 118,000 plates/m (thiourea), as well as a mixed-mode hydrophilic interaction chromatography (HILIC) retention mechanism including weak electrostatic interaction, hydrophobic interaction and anion exchange.
Collapse
|
6
|
Capillary coated with three-dimensional covalent organic frameworks for separation of fluoroquinolones by open-tubular capillary electrochromatography. J Chromatogr A 2021; 1656:462549. [PMID: 34543884 DOI: 10.1016/j.chroma.2021.462549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 01/01/2023]
Abstract
The Schiff-base reaction of 1,3,5-triformylphloroglucinol (Tp) and tetra(4-aminophenyl)methane (TAM) was performed for the synthesis of a three-dimensional covalent organic framework named 3D TpTAM, which was obtained by an ultrasound-assisted method for the first time. The morphology and structure of the synthesized TpTAM were characterized through various methods. Then, TpTAM-coated capillary columns were subsequently prepared by a covalent bonding method within a short time and applied for the separation of fluoroquinolones by capillary electrochromatography (CEC) with good resolution and reproducibility. The intraday relative standard deviations (RSDs) of the retention time and peak areas were 0.88%-0.95% and 2.27%-3.81%, respectively. The interday RSDs of retention time and peak areas were 0.71%-0.89% and 0.88%-3.60%, respectively. The column-to-column RSDs of retention time and peak areas were less than 1.90% and 13.56%, respectively. The interbatch RSDs of retention time and peak areas were less than 3.48% and 3.89%, respectively. The TpTAM-coated capillary columns could be used for no less than 100 runs with no observable changes in the separation efficiency. The separation mechanism was also studied, which indicated that π-π stacking effects, hydrophobic interactions and hydrogen bonding were the main factors. The results revealed that 3D TpTAM should have superior potential as the stationary phase in CEC for chromatographic separation.
Collapse
|
7
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
8
|
Hu W, Zhou W, Wang C, Liu Z, Chen Z. Rapid Analysis of Biological Samples Using Monolithic Polymer-Based In-Tube Solid-Phase Microextraction with Direct Mass Spectrometry. ACS APPLIED BIO MATERIALS 2021; 4:6236-6243. [DOI: 10.1021/acsabm.1c00551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, No. 185 Donghu Road, Wuchang District, Wuhan 430071, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080, China
| | - Wei Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, No. 185 Donghu Road, Wuchang District, Wuhan 430071, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080, China
| | - Chenlu Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, No. 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Zichun Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, No. 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, No. 185 Donghu Road, Wuchang District, Wuhan 430071, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|