1
|
Selective determination of formaldehyde by high-performance liquid chromatography with porous graphitic carbon column using N,N'-bis(9-anthrylmethyl)propane-1,3-diamine as derivatizing reagent. ANAL SCI 2023; 39:285-295. [PMID: 36550369 DOI: 10.1007/s44211-022-00240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Aromatic compounds containing two secondary amino groups were designed and prepared as new derivatizing reagents for aldehydes. One of them, N,N'-bis(9-anthrylmethyl)propane-1,3-diamine (APD), could achieve selective determination of formaldehyde (FA) on a porous graphitic carbon (PGC) column using xylenes, chlorobenzene, and 1-chloronaphthalene as mobile phases by high-performance liquid chromatography (HPLC). The APD-FA derivative was eluted from the PGC column, while the other APD-aldehyde derivatives remained on the column during the HPLC measurements. This specific elution was not observed using mobile phases such as acetonitrile, 1,4-dioxane, tetrahydrofuran, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, chloroform, benzene, toluene, benzyl alcohol, 2-ethyl-1-hexanol, and pyridine. The APD-FA derivative had a six-membered ring of two tertiary amines identified using 1H NMR spectroscopy. When the π-π interaction of the solvent molecule of the mobile phase with PGC overcame that between the APD-FA derivative and PGC, the APD-FA derivative could be eluted from the column. The best resolution between the peak of the APD-FA derivative and that of free APD was observed when using o-xylene. The optimum derivatization and the HPLC conditions for selective HPLC determination of FA were to conduct the derivatization of FA by heating in an aqueous phase with APD in o-xylene at 100 °C. In this method, FA could be derivatized with APD at a mildly neutral pH of 6.7, unlike the low pH required for the derivatization of aldehydes with 2,4-dinitrophenylhydrazine (DNPH), which is commonly used for the derivatization of aldehydes. The detection and quantification limits of FA were 0.8 and 3.5 ng mL-1 in this HPLC method with fluorescent detection, respectively. This selective HPLC method could be applied to the determination of FA in various water samples. It was found that only APD among the derivatizing reagents containing two secondary diamines was useful for the selective determination of FA.
Collapse
|
2
|
Bai XW, Bai XF. Determination of sulfonamide residues in cultured sea cucumber by pre-column derivatization capillary electrophoresis with fluorescence detection. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Wang SY, Liu H, Zhu JH, Zhou SS, Xu JD, Zhou J, Mao Q, Kong M, Li SL, Zhu H. 2,4-dinitrophenylhydrazine capturing combined with mass defect filtering strategy to identify aliphatic aldehydes in biological samples. J Chromatogr A 2022; 1679:463405. [DOI: 10.1016/j.chroma.2022.463405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
|
4
|
Shi L, Li Y, Zhou X, Guo Y, Han Q, Xia W, Yan C, Zhang L, Zhang W. Isopropyl-naphthylamide-hydrazine as a novel fluorescent reagent for ultrasensitive determination of carbonyl species on UPLC. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Cengiz N, Guclu G, Kelebek H, Capanoglu E, Selli S. Application of Molecularly Imprinted Polymers for the Detection of Volatile and Off-Odor Compounds in Food Matrices. ACS OMEGA 2022; 7:15258-15266. [PMID: 35571784 PMCID: PMC9096822 DOI: 10.1021/acsomega.1c07288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/13/2022] [Indexed: 05/08/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors having specific cavities intended for a template molecule with a retention mechanism that depends on molecular recognition of the targeted constituent. They were initially established for the detection of minor molecules including drugs, pesticides, or pollutants. One of the most remarkable areas where MIPs have potential utilization is in food analysis, especially in terms of volatile compounds which are found in very low concentrations in foods but play a crucial role for consumer preference and acceptance. In recent years, these polymers have been used extensively for sensing volatile organic and off-odor compounds in terms of food quality for selective high-extraction purposes. This review first summarizes the basic principles and production processes of MIPs. Second, their recent applications in the separation, identification, and quantification of volatile and off-odor compounds in food samples are elucidated.
Collapse
Affiliation(s)
- Nurten Cengiz
- Department
of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey
| | - Gamze Guclu
- Department
of Food Engineering, Faculty of Agriculture, Cukurova University, 01130 Adana, Turkey
| | - Hasim Kelebek
- Department
of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Serkan Selli
- Department
of Food Engineering, Faculty of Agriculture, Cukurova University, 01130 Adana, Turkey
| |
Collapse
|
6
|
Vaas APJP, Quirino JP. Electroosmotic flow assisted pseudophase to pseudophase microextraction for stacking in capillary zone electrophoresis. J Chromatogr A 2021; 1660:462654. [PMID: 34788671 DOI: 10.1016/j.chroma.2021.462654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
A stacking technique is proposed to improve the poor detection sensitivity of capillary zone electrophoresis (CZE) with UV detection. A long injection (e.g., 12.4 cm plug) of model anionic analytes prepared in a dilute solution of hexadecyltrimethylammonium bromide (CTAB) was enriched 26-34-x (compared to a typical or 2.1 mm sample injection) via the injection of a micellar solution of sodium dodecyl sulfate (SDS) prior to CZE separation. During sample injection, the CTAB formed a stationary pseudophase coating, which trapped the analytes at the inner walls of a fused silica capillary. The SDS micelles then released the CTAB admicelles via the formation of solution CTAB-SDS catanionic micelles during SDS plug injection and voltage application. As the SDS micelles moved through the sample zone, the formation of the catanionic micelles then released and accumulated the analytes at the front of the injected SDS zone. The stacking technique is called electroosmotic flow (EOF) assisted pseudophase to pseudophase microextraction because the EOF was essential for the formation of CTAB-SDS catanionic micelles for microextraction. Also, the CTAB and SDS aggregates are both pseudophases, which were used to retain and release the analytes from the capillary wall, respectively.
Collapse
Affiliation(s)
- Andaravaas Patabadige Jude P Vaas
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
7
|
He J, Liu J, Liu Y, Liyin Z, Wu X, Song G, Hou Y, Wang R, Zhao W, Sun H. Trace carbonyl analysis in water samples by integrating magnetic molecular imprinting and capillary electrophoresis. RSC Adv 2021; 11:32841-32851. [PMID: 35493566 PMCID: PMC9042219 DOI: 10.1039/d1ra05084b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
In order to obtain high derivatization efficiency, the overuse of derivative agent 2,4-dinitrophenylhydrazine (2,4-DNPH) is necessary for carbonyl detection. But, the 2,4-DNPH residue will cause background interferences and limit the pre-concentration factor of the target analytes. In order to overcome the bottleneck problems, the magnetic molecularly imprinted polymer based solid-phase extraction (MMIPs-SPE) method was developed with 2,4-dinitroaniline (2,4-DNAN) as the dummy template. The characteristics and selectivity of the MMIPs were investigated. Under the optimized conditions, the enrichment of carbonyls-DNPH derivatives with simultaneous removal of the surplus 2,4-DNPH was achieved. By coupling with capillary electrophoresis (CE), a satisfactory analytical performance was obtained with the detection limit ranging from 1.2 to 8.7 μg L−1 for 8 carbonyls. The MMIPs-SPE-CE method was applied successfully for the carbonyl assessment in stream water, tap water and bottled water. In addition, the migration of carbonyls in bottled drinking water was investigated under UV irradiation and heating. By integrating MMIPs-SPE method and CE, the enrichment of carbonyls-DNPH derivatives with simultaneous removal of the surplus derivative agent 2,4-DNPH can be achieved.![]()
Collapse
Affiliation(s)
- Jiahua He
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Jiawei Liu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Yangyang Liu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Zhengxi Liyin
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Xiaoyi Wu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Gang Song
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Yeyang Hou
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Ruixi Wang
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Wenfeng Zhao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Hui Sun
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China .,Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources Guangzhou 510006 Guangdong China
| |
Collapse
|
8
|
FENG J, JI X, LI C, SUN M, HAN S, FENG J, SUN H, FENG Y, SUN M. [Recent advance of new sample preparation materials in the analysis and detection of environmental pollutants]. Se Pu 2021; 39:781-801. [PMID: 34212580 PMCID: PMC9404022 DOI: 10.3724/sp.j.1123.2021.02030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 11/25/2022] Open
Abstract
To successfully analyze complex samples and detect trace targets, sample pretreatment is essential. Efficient sample pretreatment techniques can remove or reduce interference from the sample matrix. It can also enrich analytes, thereby improving analytical accuracy and sensitivity. In recent years, various sample preparation techniques, including SPE, magnetic dispersion SPE, pipette tip SPE, stir bar extraction, fiber SPME, and in-tube SPME, have received increasing attention in environmental analysis and monitoring. The extraction efficiency mainly depends on the type of adsorbent material. Therefore, the development of efficient adsorbents is a crucial step toward sample preparation. This review summarizes and discusses the research advances in extraction materials over recent years. These extraction materials contain inorganic adsorbents, organic adsorbents, and inorganic-organic hybrid materials such as graphene, graphene oxide, carbon nanotubes, inorganic aerogels, organic aerogels, triazinyl-functionalized materials, triazine-based polymers, molecularly imprinted polymers, covalent organic frameworks, metal-organic frameworks, and their derivatives. These materials have been applied to extract different types of pollutants, including metal ions, polycyclic aromatic hydrocarbons, plasticizers, alkanes, phenols, chlorophenols, chlorobenzenes, polybrominated diphenyl ethers, perfluorosulfonic acids, perfluorocarboxylic acids, estrogens, drug residues, and pesticide residues, from environmental samples (such as water and soil samples). These sample preparation materials possess high surface areas, numerous adsorption sites, and allow extraction via various mechanisms, such as π-π, electrostatic, hydrophobic, and hydrophilic interactions, as well as hydrogen and halogen bond formation. Various sample pretreatment techniques based on these extraction materials have been combined with various detection methods, including chromatography, mass spectrometry, atomic absorption spectroscopy, fluorescence spectroscopy, and ion mobility spectroscopy, and have been extensively used for the determination of environmental pollutants. The existing challenges associated with the development of sample preparation techniques are proposed, and prospects for such extraction materials in environmental analysis and monitoring are discussed. Major trends in the field, including the development of efficient extraction materials with high enrichment ability, good selectivity, excellent thermal stability, and chemical stability, are discussed. Green sample pretreatment materials, environmentally friendly synthesis methods, and green sample pretreatment methods are also explored. Rapid sample pretreatment methods that can be conducted within minutes or seconds are of significant interest. Further, online sample pretreatment and automatic analysis methods have attracted increasing attention. Besides, real-time analysis and in situ detection have been important development directions, and are expected to be widely applicable in environmental analysis, biological detection, and other fields. Modern synthesis technology should be introduced to synthesize specific extraction materials. Controllable preparation methods for extraction materials, such as the in situ growth or in situ preparation of extraction coatings, will acquire importance in coming years. It will also be important to adopt high-performance materials from other fields for sample pretreatment. Organic-inorganic hybrid extraction materials can combine the advantages both organic materials and inorganic materials, and mutually compensate for any disadvantages. Extraction materials doped with nanomaterials are also promising. Although existing sample pretreatment techniques are relatively efficient, it is still imperative to develop novel sample preparation methods.
Collapse
Affiliation(s)
- Juanjuan FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiangping JI
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chunying LI
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingxia SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Sen HAN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiaqing FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Haili SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yang FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Min SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
9
|
Marcela Melo Cardozo I, Pereira Dos Anjos J, Oliveira Campos da Rocha F, de Andrade JB. Exploratory analysis of the presence of 14 carbonyl compounds in bottled mineral water in polyethylene terephthalate (PET) containers. Food Chem 2021; 365:130475. [PMID: 34237580 DOI: 10.1016/j.foodchem.2021.130475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/16/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Carbonyl compounds (CCs) can migrate from bottles to mineral water because of plastic degradation. An exploratory analysis of the presence a significant number of CCs (14) in bottled mineral water with and without gas in polyethylene terephthalate (PET) containers was performed using ultra-fast liquid chromatography coupled to mass spectrometry (UFLC-MS). The data from the analysis was submitted to chemometric treatment (principal component analysis, PCA). Formaldehyde, acetaldehyde, and benzaldehyde were found in all samples (0.07-125 ng mL-1). Acrolein and acetone were present in 81% and 75% of the samples, respectively. The concentration of acrolein in carbonated water was up to 3.8 times greater than that measured in non-carbonated water (0.07-0.44 ± 0.01 ng mL-1). PCA analysis showed that gasification can influence the composition of CCs present in mineral water and that the plastic material of the bottles is a likely source of CCs. In addition, benzaldehyde levels may be associated with the use of recycled materials.
Collapse
Affiliation(s)
- Ingrid Marcela Melo Cardozo
- Universidade Federal da Bahia, Instituto de Química, Salvador, BA 40170-290, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Ondina, Salvador, BA 40170-290, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, Salvador, BA 40170-290, Brazil
| | - Jeancarlo Pereira Dos Anjos
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, Salvador, BA 40170-290, Brazil; Centro Universitário SENAI CIMATEC, Av. Orlando Gomes, 1845 - Piatã, CEP41650-010 Salvador, BA, Brazil
| | - Franciele Oliveira Campos da Rocha
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Ondina, Salvador, BA 40170-290, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, Salvador, BA 40170-290, Brazil; Centro Universitário SENAI CIMATEC, Av. Orlando Gomes, 1845 - Piatã, CEP41650-010 Salvador, BA, Brazil
| | - Jailson B de Andrade
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Ondina, Salvador, BA 40170-290, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, Salvador, BA 40170-290, Brazil; Centro Universitário SENAI CIMATEC, Av. Orlando Gomes, 1845 - Piatã, CEP41650-010 Salvador, BA, Brazil.
| |
Collapse
|
10
|
Eeltink S, Meston D, Svec F. Recent developments and applications of polymer monolithic stationary phases. ANALYTICAL SCIENCE ADVANCES 2021; 2:250-260. [PMID: 38716453 PMCID: PMC10989662 DOI: 10.1002/ansa.202100006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2024]
Abstract
This review highlights the current trends and the most recent advances in the field of preparation and application of organic polymer-based monolithic materials and covers literature published in 2020. A short historical background is provided and protocols to anchor monoliths covalently to the wall of the column/separation device are discussed. Furthermore, advances in tuning the macroporous structure and establishing its link to separation performance are conferred. Finally, method development and key applications using novel monolithic columns are discussed.
Collapse
Affiliation(s)
- Sebastiaan Eeltink
- Department of Chemical EngineeringVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Daniel Meston
- Department of Chemical EngineeringVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Frantisek Svec
- Faculty of Pharmacy, Department of Analytical ChemistryCharles UniversityHradec KraloveCzech Republic
| |
Collapse
|