1
|
Shen Y, Jin R, Zhang F, Yang B. A Polymer-Based Polar Stationary Phase Grafted With Modified Lysine for Hydrophilic Interaction Chromatography. J Sep Sci 2024; 47:e202400521. [PMID: 39319580 DOI: 10.1002/jssc.202400521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The high hydrophobicity and chemical inertness of poly(styrene-divinylbenzene) (PS-DVB) microspheres make their surface hydrophilic modification difficult. Here we describe a facile way to convert PS-DVB microspheres to hydrophilic, then can be used as polar stationary phase for hydrophilic interaction chromatography. This approach utilizes the grafting of an acrylamide-terminated lysine zwitterionic monomer onto PS-DVB microspheres via free radical polymerization. The obtained stationary phase shows good hydrophilicity and a typical retention mechanism of hydrophilic interaction chromatography toward several model polar analytes. It also exhibits obvious zwitterionic properties and is capable of separating cationic and anionic analytes simultaneously. The column shows negligible bleeding level, much superior to silica-based ones.
Collapse
Affiliation(s)
- Yufeng Shen
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Rui Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Feifang Zhang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bingcheng Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Zhao X, Niu Y, Zhao C, Li Z, Li K, Qin X. Simplified Synthesis of Poly(ethyleneimine)-Modified Silica Particles and Their Application in Oligosaccharide Isolation Methods. Int J Mol Sci 2024; 25:9465. [PMID: 39273411 PMCID: PMC11395661 DOI: 10.3390/ijms25179465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
There are great challenges in the field of natural product isolation and purification and in the pharmacological study of oligosaccharide monomers. And these isolation and purification processes are still universal problems in the study of natural products (NPs), traditional Chinese medicine (TCM), omics, etc. The same polymer-modified materials designed for the special separation of oligosaccharides, named Sil-epoxy-PEI and Sil-chloropropyl-PEI, were synthesized via two different methods and characterized by scanning electron microscopy combined with energy spectrum analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential as well as surface area analysis, etc. Several nucleotide/nucleoside molecules with different polarities and selectivities were successfully isolated in our laboratory using stainless-steel columns filled with the synthesized material. In addition, the separation of saccharide probes and oligosaccharides mixtures in water extracts of Morinda officinalis were compared in HILIC mode. The results showed that the resolution of separations for the representative analytes of the Sil-epoxy-PEI column was higher than for the Sil-chloropropyl-PEI column, and the developed stationary phase exhibited improved performance compared to hydrothermal carbon, amide columns and other HILIC materials previously reported.
Collapse
Affiliation(s)
- Xingyun Zhao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Yifan Niu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Chengxiao Zhao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
3
|
A Compendium of the Principal Stationary Phases Used in Hydrophilic Interaction Chromatography: Where Have We Arrived? SEPARATIONS 2022. [DOI: 10.3390/separations10010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hydrophilic interaction liquid chromatography (HILIC) today is a well-known and largely applied technique to analyse polar compounds such as pharmaceuticals, metabolites, proteins, peptides, amino acids, oligonucleotides, and carbohydrates. Due to the large number of stationary phases employed for HILIC applications, this review aims to help the reader in choosing a proper stationary phase, which often represents the critical point for the success of a separation. A great offer is present for achiral applications in contrast to the chiral phases developed for HILIC enantioseparations. In the last case, up-to-date solutions are presented.
Collapse
|
4
|
Li S, Li Y, Fan X, Ma Y, Ji W, Li D, Sun Y. Dendritic organic molecular gel coating with molecular shape selectivity and its application in selective separation by liquid chromatography. Anal Bioanal Chem 2022; 414:8263-8276. [PMID: 36201045 DOI: 10.1007/s00216-022-04356-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/01/2022]
Abstract
Dendritic organic molecular gels are a promising class of three-dimensional network compounds. Here, we have synthesized a new type of dendritic organic molecular gel stationary phase (SiO2-G3) by using benzyl alcohol as raw material and dimethyl 5-hydroxyisophthalate as growth unit to synthesize a third-generation organic molecular gel G3, which grafted onto the silica surface by cyanogen chloride (CC). The developed stationary phase not only exhibits high molecular shape selectivity but also has a RPLC/HILIC/IEC mixed-mode characteristic for HPLC due to the ordered structure, the multiple strong π-π stacking interactions and the introduction of a hydrophilic triazine fraction during the grafting process. Compared with a commercial C18 column, the developed column exhibited flexible selectivity, enhanced separation performance and excellent separation of monosubstituted benzene, polycyclic aromatic hydrocarbons (PAHs), positional isomers, nucleosides and nucleobases, benzoic acid and aniline compounds. In addition, the new column provided baseline separation of polycyclic aromatic hydrocarbon contaminants in Yellow River water, verifying its potential for application in the analysis of real samples.
Collapse
Affiliation(s)
- Shaorong Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.,College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yuanyuan Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China. .,College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xu Fan
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.,College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.,College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Dianjun Li
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yonggang Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.,College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
5
|
Guo Y. A Survey of Polar Stationary Phases for Hydrophilic Interaction Chromatography and Recent Progress in Understanding Retention and Selectivity. Biomed Chromatogr 2022; 36:e5332. [PMID: 35001408 DOI: 10.1002/bmc.5332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
Various polar stationary phases have become available for hydrophilic interaction chromatography (HILIC) and help drive continuous applications in biomedical, environmental and pharmaceutical areas in the past decade. Although the stationary phases for HILIC have been reviewed previously, it is an appropriate time to take another look at the progresses during the past five years. The current review provides an overview of the polar stationary phases commercially available for HILIC applications in an effort to assist scientists in selecting suitable columns. New types of stationary phase that were published in literature in the past five years are summarized and discussed. The trend in stationary phase research and development is also highlighted. Of particular interest is the experimental evidence for direct interactions of polar analytes with the ligands of the stationary phases under HILIC conditions. In addition, two different approaches have been developed to delineate the relative significance of the partitioning and adsorption mechanisms in HILIC, representing an important advancement in our understanding of the retention mechanisms in HILIC.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, New Jersey, USA
| |
Collapse
|
6
|
Wu Y, Luo K, Liu Y, Chen W, Bai Z, Tang S. Innovative preparation of ureido/dodecyl dual-functionalized silica as a versatile mixed-mode stationary phase for high-resolution chromatographic separations. J Chromatogr A 2022; 1665:462834. [DOI: 10.1016/j.chroma.2022.462834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/19/2023]
|
7
|
Fan C, Quan K, Chen J, Qiu H. Comparison of chromatographic performance of co-grafted silica using octadecene respectively with vinylpyrrolidone, vinylimidazole and vinylpyridine. J Chromatogr A 2021; 1661:462690. [PMID: 34883356 DOI: 10.1016/j.chroma.2021.462690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Three reversed-phase liquid chromatography (RPLC) stationary phases were obtained by using long-chain 1-octadecene (OD) co-grafted with three short-chain monomers, including N-vinylpyrrolidone (NVP), 1-vinylimidazole (VIm) and 4-vinylpyridine (VPy), respectively (noted as Sil@ODNVP, Sil@ODVIm and Sil@ODVPy). Peak broadening phenomenon in RPLC mode which resulted by short-chain was examined carefully. Compared with Sil@ODNVP, both of Sil@ODVIm and Sil@ODVPy had smaller peak width and higher column efficiency in the separation of 10 polycyclic aromatic hydrocarbons (PAHs), 7 alkyl benzenes, 7 aromatic acids, 7 aromatic esters and 9 phenols. In addition, VPy has the strongest ion exchange capacity than other two short-chains. In this case, we can see that VPy and VIm maybe more suitable to be used as functional monomeric modifiers of new chromatographic stationary phases.
Collapse
Affiliation(s)
- Chao Fan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|