1
|
Poole CF. Guidelines for descriptor assignments for the solvation parameter model by separation techniques. J Chromatogr A 2024; 1729:464964. [PMID: 38843574 DOI: 10.1016/j.chroma.2024.464964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/17/2024]
Abstract
The solvation parameter model uses six compound descriptors to model equilibrium properties in biphasic systems formally defined as excess molar refraction, E, dipolarity/polarizability, S, overall hydrogen-bond acidity, A, overall hydrogen-bond basicity, B, McGowan's characteristic volume, V, and the gas-liquid partition constant on hexadecane at 25 °C, L. The V descriptor can be assigned from structure and the E descriptor for compounds liquid at 20 °C can be calculated from its refractive index and characteristic volume. The E descriptor for compounds solid at 20 °C and the S, A, B, and L descriptors are assigned from experimental properties traditionally obtained by chromatographic, liquid-liquid partition, and solubility measurements. Here I report an efficient experimental design using the Solver method for the accurate assignment of descriptors for neutral compounds that simultaneously minimizes laboratory resources. This multi-technique approach requires 3 retention factor measurements in a 60 °C temperature range per compound on four columns by gas chromatography, 3 retention factor measurements in a 30 % (v/v) acetonitrile composition range per compound on two columns by reversed-phase liquid chromatography, and eight partition constant measurements by liquid-liquid partition in totally organic and aqueous biphasic systems for a total of 26 experimental measurements. The accuracy of the descriptor assignments was validated by comparison with the values in the Wayne State University (WSU) descriptor database taken as the best estimate of the true descriptor values. The E, S, A, B and L descriptors were assigned simultaneously by the Solver method using the above approach without significant bias and with an average absolute deviation (AAD) of 0.054, 0.018, 0.015, 0.013, and 0.040, respectively, compared with the WSU database values, corresponding to a relative absolute average deviation in percent (RAAD) of 7.2, 1.9, 3.6, 5.1, and 0.84 %, respectively, for 32 varied compounds. This streamlined approach represents a significant improvement on earlier single-technique approaches used as the starting point for the development of the multi-technique approach. For compounds of variable hydrogen-bond basicity modifications to the multi-technique approach were implemented while maintaining the same number of experimental measurements. Acceptable descriptor assignments for B/B° were obtained for compounds liquid at 20 °C for which the E descriptor was available by calculation. For solid compounds at 20 °C the E and B/B° descriptors are restricted to qualitative application where approximate values may be acceptable.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
2
|
Poole CF. Determination of the hydrogen-bond basicity descriptor by reversed-phase liquid chromatography. J Chromatogr A 2024; 1716:464639. [PMID: 38217960 DOI: 10.1016/j.chroma.2024.464639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Except for alkanes, most organic compounds are hydrogen-bond bases. The B° descriptor of the solvation parameter model provides a convenient measure of the effective (or summation) hydrogen-bond basicity of organic compounds. A fast and convenient method to assign the B° descriptor is required to support studies of hydrogen-bonding in separation systems. A two-column system with acetonitrile-water mobile phase compositions and the measurement of up to eleven isocratic retention factors is proposed for this purpose. Several reversed-phase column chemistries and mobile phases were evaluated with the two-column system consisting of a pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica columns recommended for this purpose. To assess the accuracy of the method values for B° were taken from the Wayne State University (WSU) compound descriptor database, which were assigned using conventional multi-technique methods and large datasets. The two-column systems provided an unbiased assignment of B° with an average deviation of 0.008 and an average absolute deviation of 0.021 compared with the target value for 55 varied compounds. The two-column system is unsuitable for assigning the other descriptors used in the solvation parameter model and results in erroneous assignments of B° for nitrogen-containing compounds capable of electrostatic interactions on silica-based reversed-phase columns.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
3
|
Atapattu SN. Selectivity comparison of acetonitrile-methanol-water ternary mobile phases on an octadecylsiloxane-bonded silica stationary phase. J Sep Sci 2023; 46:e2300489. [PMID: 37786265 DOI: 10.1002/jssc.202300489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
The solvation parameter model was used in this study to investigate various intermolecular interactions that influence retention on the standard C18 stationary phase for the solvent system acetonitrile:methanol (ACN:MeOH, 1:1). In comparison to the organic mobile phase modifiers acetonitrile, acetone, methanol, 2-propanol, and tetrahydrofuran, the solvent strength for the ACN:MeOH (1:1) solvent system was evaluated. To facilitate the interpretation of various intermolecular interactions that contribute to retention on a standard C18 stationary phase for the solvent system ACN:MeOH (1:1), system maps were constructed and compared with those of acetone, tetrahydrofuran, acetonitrile, 2-propanol, and methanol. The solvation parameter models were constructed for the ternary solvent system ACN:MeOH (1:1)-water, and in the models constructed, the coefficient of determination values were from 0.998 to 0.999, the Fisher statistic values for the models were from 1687 to 4015, and the standard error of the estimate values ranged from 0.022 to 0.029. The solvent system ACN:MeOH (1:1) has retention properties more similar to methanol than acetonitrile, indicating methanol's influence is more dominant.
Collapse
|
4
|
Poole CF. Revised descriptors for polycyclic aromatic and related hydrocarbons for the prediction of environmental properties using the solvation parameter model. J Chromatogr A 2023; 1710:464430. [PMID: 37812944 DOI: 10.1016/j.chroma.2023.464430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Revised descriptors for twenty-five polycyclic aromatic and related hydrocarbons (PAHs) forming a component of the Wayne State University (WSU) descriptor database are provided for use with the solvation parameter model. The descriptors are determined by the Solver method using experimental data for calibrated gas-liquid and reversed-phase liquid chromatographic retention factors and liquid-liquid partition constants in totally organic biphasic systems. The characteristic solvation properties of the PAHs are accounted for mainly by the additional dispersion interactions (E descriptor) and dipole-type interactions (S descriptor) resulting from the availability of easily polarizable electrons that complement typical dispersion interactions for saturated hydrocarbons. The descriptors afford acceptable prediction of the water-air partition constant (average absolute deviation AAD = 0.17, n = 22), octanol-air partition constant (AAD = 0.12, n = 20), and water-octanol partition constant (AAD = 0.10, n = 23). A two-parameter model containing only the V and B descriptors provides an unbiased prediction of aqueous solubility for the PAHs with an AAD = 0.26 (n = 22). The descriptors estimated by convenient chromatographic and partition constant measurements are demonstrated to be a viable alternative to the experimental determination of environmental properties otherwise only available by tedious, expensive, and low data throughput experimental techniques.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
5
|
Poole CF. The effect of the assigned descriptors for phthalate esters on the characterization of their separation properties using the solvation parameter model. J Chromatogr A 2023; 1707:464296. [PMID: 37595351 DOI: 10.1016/j.chroma.2023.464296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Revised descriptors are determined for fifteen phthalate esters for use in the solvation parameter model and form part of the Wayne State University (WSU) compound descriptor database. For thirteen phthalate esters a comparison is made with the same compounds in the Abraham descriptor database. Gas chromatographic retention factors on poly(methyloctylsiloxane), SPB-Octyl, and poly(cyanopropylphenyldimethylsiloxane), DB-225, stationary phases are used to facilitate an assessment of the contribution of cavity formation and dispersion interactions, L descriptor, and dipole-type interactions, S descriptor, to the experimental retention factors (log k) for the phthalate esters with minimum interference from competing intermolecular interactions. The results indicate a systematic overprediction of the cavity and dispersion interaction term and underprediction of dipole-type interactions for the Abraham descriptors compared with the WSU descriptors for the phthalate esters. The average absolute deviation (AAD) for 13 phthalate esters on SPB-Octyl is 0.039 (WSU descriptors) compared with 0.252 (Abraham descriptors) and for 9 phthalate esters on DB-225 0.030 (WSU descriptors) compared with 0.167 (Abraham descriptors). The results for dipole-type interactions are confirmed and extended to include the hydrogen-bond basicity of the phthalate esters, B descriptor, by evaluation of partition constants in aqueous biphasic systems and the n-heptane-2,2,2-trifluoroethanol biphasic system. Differences in the contribution of the hydrogen-bond basicity of the phthalate esters to the experimental partition constants are largely random with respect to database selection but important for the accurate prediction of the partition constants. The AAD for the partition constant for 15 phthalate esters is 0.063 (WSU descriptors) compared with 0.320 (Abraham descriptors) for the heptane-2,2,2-trifluoroethanol biphasic system and 0.13 (WSU descriptors) compared with 0.25 (Abraham descriptors) for 9 phthalate esters in the octanol-water biphasic system. The WSU descriptors for the phthalate esters exhibit a better fit with the experimental data for separation systems and are free of the extreme values predicted for the Abraham descriptors for several phthalate esters.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
6
|
Poole CF. The effect of descriptor database selection on the physicochemical characterization and prediction of water-air, octanol-air and octanol-water partition constants using the solvation parameter model. J Chromatogr A 2023; 1706:464213. [PMID: 37567000 DOI: 10.1016/j.chroma.2023.464213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
The distribution of neutral compounds in biphasic separation systems can be described by the solvation parameter model using six solute properties, or descriptors. These descriptors (McGowan's characteristic volume, excess molar refraction, dipolarity/polarizability, hydrogen-bond acidity and basicity, and the gas-liquid partition constant on n-hexadecane at 298.15 K) are curated in two publicly accessible databases for hundreds (WSU compound descriptor database) or thousands (Abraham compound descriptor database). These databases were developed independently using different approaches resulting in descriptor values that vary for many compounds. Previously, it was shown that the two descriptor databases are not interchangeable, and the WSU descriptor database consistently demonstrated improved model performance for chromatographic systems where the uncertainty in the dependent variable was minimized by suitable quality control and calibration procedures. In this report we wish to evaluate whether the same conclusions are true for models with a dependent variable containing significant measurement uncertainty. To evaluate this hypothesis, we assembled databases for water-air, octanol-air, and octanol-water partition constants reported by multiple laboratories using various measurement methods. It was found that database selection has little effect on model quality or model predictive capability but significantly affects the assignment of the contribution of individual intermolecular interactions to the dependent variable. The latter information is database specific, and a quantitative comparison of system constants should be restricted to models using the same compound descriptor database.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
7
|
Poole CF. The influence of descriptor database selection on the solvation parameter model for separation processes. J Chromatogr A 2023; 1692:463851. [PMID: 36773399 DOI: 10.1016/j.chroma.2023.463851] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
The distribution of neutral compounds in biphasic separation systems can be described by the solvation parameter model using six solute properties, or descriptors. These descriptors characterize the size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. McGowan's characteristic volume and the excess molar refraction for liquids are available by calculation (E requires and experimental refractive index). The other descriptors and excess molar refraction for solids are experimental quantities and subject to greater variation or are estimated using computational or empirical models. Solute descriptors for several thousand compounds are available in the Abraham descriptor database and for several hundred compounds in the WSU descriptor database. These publicly accessible databases were developed independently using different approaches and for many compounds provide different descriptor values. In this report we evaluate the effect of mixing descriptors from the two databases on modeling chromatographic retention factors and liquid-liquid partition constants. It is shown that the two descriptor databases are not interchangeable. The WSU descriptor database consistently demonstrates improved model quality as determined by statistical parameters. Model system constants exhibit a general dependence on database selection with an approximately linear trend as a function of the fraction of compounds assigned descriptors from either database. There is no general model performance advantage to using mixed descriptor datasets and no real cause for concern for relatively large datasets containing < 15 % of compounds with descriptors assigned from the other database. For small datasets, descriptor quality is an important variable for adequate model performance.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
8
|
Atapattu SN. Unique selectivity of tetrahydrofuran-2-propanol-water ternary mobile phases on a superficially porous particle column in reversed-phase liquid chromatography. J Chromatogr A 2023; 1690:463801. [PMID: 36702058 DOI: 10.1016/j.chroma.2023.463801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Three mixed mobile phase organic modifiers, tetrahydrofuran: 2-propanol 1:1 (v/v), tetrahydrofuran: 2-propanol: 1:3 (v/v), and tetrahydrofuran: 2-propanol: 3:1 (v/v) were studied at 20-70% (v/v) total organic solvent compositions. The solvent strength parameters for the three mixed organic modifiers and system properties were compared to those of more established binary solvent systems, acetonitrile-water and methanol-water. To interpret intermolecular interactions responsible for retention for the three mixed mobile phase organic modifiers, system maps were constructed and compared with acetonitrile and methanol. Three mixed organic mobile phase modifiers on one stationary phase chemistry (Kinetex C18) provide different selectivity than the more established acetonitrile and methanol mobile phase modifiers on the same stationary phase (Kinetex C18) as well as different stationary phase chemistries (Kinetex Biphenyl, Kinetex Phenyl-Hexyl, Kinetex F5, Kinetex XB-C18, and Kinetex EVO C18). The solvation parameter models for all three mixed mobile phase systems the coefficient of determination ranged from 0.991 to 0.999, the Fisher statistic from 338 to 1850, and the standard error of the estimate ranged from 0.024 to 0.097.
Collapse
Affiliation(s)
- Sanka N Atapattu
- CanAm Bioresearch Inc., 6-1200 Waverley Street, Winnipeg, MB R3T 0P4, Canada.
| |
Collapse
|
9
|
Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A 2023; 1687:463682. [PMID: 36502643 DOI: 10.1016/j.chroma.2022.463682] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The transfer of neutral compounds between immiscible phases in chromatographic or environmental systems can be described by six solute properties (solute descriptors) using the solvation parameter model. The solute descriptors are size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. V and E for liquids are accessible by calculation but the other descriptors and E for solids are determined experimentally by chromatographic, liquid-liquid partition, and solubility measurements. These solute descriptors are available for several thousand compounds in the Abraham solute descriptor databases and for several hundred compounds in the WSU experimental solute descriptor database. In the first part of this review, we highlight features important in defining each descriptor, their experimental determination, compare descriptor quality for the two organized descriptor databases, and methods for estimating Abraham solute descriptors. In the second part we focus on recent applications of the solvation parameter model to characterize environmental systems and its use for the identification of surrogate chromatographic models for estimating environmental properties.
Collapse
|
10
|
Poole CF, Atapattu SN. Analysis of the solvent strength parameter (linear solvent strength model) for isocratic separations in reversed-phase liquid chromatography. J Chromatogr A 2022; 1675:463153. [DOI: 10.1016/j.chroma.2022.463153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
|
11
|
Poole CF. Applications of the solvation parameter model in thin-layer chromatography. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-022-00156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
|
13
|
Zhang Y, Zhang H, Wang J, Yu Z, Li H, Yang M. Suspect and target screening of emerging pesticides and their transformation products in an urban river using LC-QTOF-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147978. [PMID: 34102441 DOI: 10.1016/j.scitotenv.2021.147978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
This study sheds light on the occurrence of emerging pesticides and their transformation products (TPs) in an urban river in Beijing that is mainly supplemented with treated wastewater. To this end, suspect and non-target screening was conducted using a database of 557 commercial pesticides and over 1400 predicted TPs. Finally, 30 pesticides and 20 TPs were identified, with 12 pesticides and 10 TPs detected in all samples. Eleven pesticides and 17 TPs were detected in Beijing for the first time. Among these, 18 compounds were confirmed using authentic standards. Concentrations of the confirmed and suspected compounds were determined by quantification and semi-quantification, respectively, based on 18 authentic standards. Fungicides and their TPs constituted the largest group and exhibited the highest total concentration (26 compounds; 52.2 μg/L), followed by insecticides (14 compounds; 51.3 μg/L) and herbicides (10 compounds; 24.5 μg/L). DEET, carbendazim, prometryn, ω-carboxylic acid, 2-aminobenzimidazole, metolachlor TP, hexaconazole TP, metalaxyl TP, and azoxystrobin TP exhibited relatively high mean concentration (>100 ng/L). Among the 20 TPs, approximately 65% showed higher concentrations than their parent compounds. Correlation analysis revealed that 6 pesticides and 10 TPs in the river were mainly contributed by the discharge from a wastewater treatment plant. Although a majority of the emerging pesticides had low toxicity, 10 pesticides exhibited high risks to aquatic systems, especially invertebrates.
Collapse
Affiliation(s)
- Yangping Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, 100085, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Juan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiyong Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Hongyan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
14
|
Atapattu SN. Solvation properties of acetone-water mobile phases in reversed-phase liquid chromatography. J Chromatogr A 2021; 1650:462252. [PMID: 34087521 DOI: 10.1016/j.chroma.2021.462252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
The solvation parameter model is used for the selectivity evaluation of siloxane-bonded reversed-phase columns with mobile phases containing from 20-70 % (v/v) acetone-water. System constants determined at 10 % (v/v) increments of acetone solvent were utilized for the construction of system maps and correlation diagrams on five columns with different stationary phase chemistry; superficially porous octadecylsiloxane-bonded silica (Kinetex C18), electrostatic-shielded octadecylsiloxane-bonded silica (Luna Omega PS C18, diisobutyloctadecyl-bonded silica(Kinetex XB-C18), phenylhexyl-bonded silica (Kinetex Phenyl-Hexyl) and octylsiloxane-bonded silica (Kinetex C8). For all columns and acetone-water compositions the calibration n = 34 to 39 had a range for the coefficient of determination from 0.988 to 0.998, Fisher statistic from 277 to 1551 and a standard error of the estimate from 0.024 to 0.097. A comparison of the system constants for acetonitrile and methanol compositions for the same separation conditions confirms that the general solvation properties of acetone mobiles phases are more similar to that of acetonitrile than methanol and that method transfer should not be difficult.
Collapse
|
15
|
Performance of nanoflow liquid chromatography using core-shell particles: A comparison study. J Chromatogr A 2021; 1648:462218. [PMID: 33992996 DOI: 10.1016/j.chroma.2021.462218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 01/23/2023]
Abstract
Due to its unique structure, core-shell material has presented significantly improved chromatographic performance in comparison with conventional totally porous material. This has been well demonstrated in the analytical column format, e.g. 4.6 mm i.d. columns. In the proteomics field, there is always a demand for high resolution microseparation tools. In order to explore core-shell material's potential in proteomics-oriented microseparations, we investigated chromatographic performance of core-shell material in a nanoLC format, as well as its resolving power for protein digests. The results show core-shell nanoLC columns have similar van Deemter curves to the totally porous particle-packed nanoLC columns. For 100 µm i.d. capillary columns, the core-shell material does not have significantly better dynamics. However, both core-shell and totally porous particle-packed nanoLC columns have shown high efficiencies: plate heights of ~11 µm, equivalent to 90000 plates per meter, have been achieved with 5 µm particles. Using a 60 cm long core-shell nanoLC column, 72000 plates were realized in an isocratic separation of neutral compounds. For a 15 cm long nanoLC column, a maximum peak capacity of 220 has been achieved in a 5 hour gradient separation of protein digests, indicating the high resolving power of core-shell nanoLC columns. With a standard HeLa cell lysate as the sample, 2546 proteins were identified by using the core-shell nanoLC column, while 2916 proteins were identified by using the totally porous particle-packed nanoLC column. Comparing the two sets of proteomics data, it was found that 1830 proteins were identified by both columns, while 1086 and 716 proteins were uniquely identified by using totally porous and core-shell particle-packed nanoLC columns, respectively, suggesting their complementarity in nanoLC-MS based proteomics.
Collapse
|
16
|
Poole CF. Solvation parameter model: Tutorial on its application to separation systems for neutral compounds. J Chromatogr A 2021; 1645:462108. [PMID: 33857674 DOI: 10.1016/j.chroma.2021.462108] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
The solvation parameter model affords a useful tool to model distribution properties of neutral compounds in biphasic separation systems. Common applications include column characterization and method development in gas chromatography; reversed-phase, micellar and hydrophilic interaction liquid chromatography; supercritical fluid chromatography; and micellar electrokinetic chromatography. The characterization of the distribution properties of liquid-liquid partition systems is another major application of this model. This tutorial is aimed at establishing good practices for the application of the model to separation systems. Suitable experimental protocols to determine system constants by multiple linear regression analysis and descriptors by the Solver method are presented; statistical tools to evaluate model quality are discussed; and model-specific data analysis tools based on system maps and correlation diagrams are described.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|