1
|
Burratti L, Sgreccia E, Bertelà F, Galiano F. Metal nanostructures in polymeric matrices for optical detection and removal of heavy metal ions, pesticides and dyes from water. CHEMOSPHERE 2024; 362:142636. [PMID: 38885767 DOI: 10.1016/j.chemosphere.2024.142636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Water pollutants such as heavy metal ions, pesticides, and dyes pose a worldwide issue. Their presence in water resources interferes with the normal growth mechanisms of living beings and causes long or short-term diseases. For this reason, research continuously tends to develop innovative, selective, and efficient processes or technologies to detect and remove pollutants from water. This review provides an up-to-date overview on metal nanoparticles loaded in polymeric matrices, such as hydrogels and membranes, and employed as optical sensors and as removing materials for water pollutants. The synthetic pathways of nanomaterials loading into polymeric matrices have been analyzed, particularly focusing on noble metal nanoparticles, noble metal nanoclusters, and metal oxide nanoparticles. Moreover, the sensing properties of modified matrices towards water pollutants have been discussed in addition to the interaction mechanisms between the sensors and the toxic compounds. The last part of the review has been devoted to illustrating the separation mechanism and removal performance of membranes loaded with nanomaterials in the treatment and purification of water streams from different contaminants (heavy metals, dyes and pesticides).
Collapse
Affiliation(s)
- Luca Burratti
- Faculty of Science, Technology and Innovation of the University "Mercatorum", Piazza Mattei 10, 00186, Rome (RM), Italy
| | - Emanuela Sgreccia
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome (RM), Italy
| | - Federica Bertelà
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146, Rome (RM), Italy
| | - Francesco Galiano
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy.
| |
Collapse
|
2
|
Majd M, Gholami M, Fathi A, Sedghi R, Nojavan S. Thin-film solid-phase microextraction of pesticides from cereal samples using electrospun polyvinyl alcohol/modified chitosan/porous organic framework nanofibers. Food Chem 2024; 444:138647. [PMID: 38325082 DOI: 10.1016/j.foodchem.2024.138647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
In this study, a coating of electrospun polyvinyl alcohol/modified chitosan/hydroxy-containing porous organic framework (PVA/MCS/HC-POF) was fabricated and applied as a novel sorbent for thin-film solid-phase microextraction of pesticides from cereal samples, followed by HPLC-UV. The successful fabrication of PVA/MCS/HC-POF was confirmed through characterization tests. The functional group of MCS and a large number of hydroxyl groups on the HC-POF structure contributed to the co-extraction of pesticides. Under the optimum conditions, the calibration plots were linear within the range of 5.0-800 ng mL-1 (r2 ≥ 0.978), and the limits of detection were obtained below 4.0 ng mL-1. The method's precision was investigated through intra-day, inter-day, and film-to-film RSD (%) measurements, all of which were less than 6.5 %, 8.2 %, and 10.0 %, respectively. Furthermore, satisfactory recoveries ranging from 63.3 % to 79.0 % were obtained. Accordingly, the proposed method can be considered a suitable alternative for measuring trace amounts of pesticides in cereal samples.
Collapse
Affiliation(s)
- Mahshid Majd
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran
| | - Marziye Gholami
- Department of Polymer & Materials Chemistry, Shahid Beheshti University, Evin, Tehran, Iran
| | - Anna Fathi
- Department of Polymer & Materials Chemistry, Shahid Beheshti University, Evin, Tehran, Iran
| | - Roya Sedghi
- Department of Polymer & Materials Chemistry, Shahid Beheshti University, Evin, Tehran, Iran.
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran.
| |
Collapse
|
3
|
Wang B, Xu S, Li W, Liu Y, Li Z, Ma L, Xu X, Chen D. Polyaniline-coated kapok fibers for convenient in-syringe solid-phase microextraction and determination of organochlorine and pyrethroid pesticide residues in aqueous samples. Talanta 2024; 271:125706. [PMID: 38280266 DOI: 10.1016/j.talanta.2024.125706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Pesticides used in agriculture have low polarity and a tendency to accumulate in fatty tissues, posing potential risks to human health. Effective pre-treatment is crucial due to complex sample matrices and low concentrations of pesticide residues typically encountered in instrument analysis. In this study, polyaniline-coated kapok fiber (PANI-KF) was synthesized successfully using in-situ oxidative polymerization for use as sorbents in in-syringe SPME of pyrethroid pesticides (PYRs) and organochlorine pesticides (OCPs) from aqueous samples. Coating the natural KF with PANI maintained the hollow microtubular structure and fiber morphology while significantly enhancing the extraction efficiency. The extraction process was easily conducted by simply pulling and pushing the syringe plunger. The entire extraction process, utilizing 3 mg of PANI-KF, could be completed in approximately 3 min. Density functional theory results indicated that the adsorption mechanism of PANI-KF towards OCPs and PYRs mainly involved van der Waals interactions, π-π interactions, and weak hydrogen bonding interactions. With the coupling of gas chromatography-mass spectrometry, a quantification method was established that exhibited good linearities (R2 > 0.990), and relative recoveries (87.2-108.5 %). The limits of detection ranged from 0.4 to 2.0 ng mL-1 and the matrix effects were negligible (-12.3-16.4 %). The validated in-syringe SPME-GC-MS method was successfully applied to determine pesticide residues in fruit juices, oral liquids and herbal extract granules with satisfactory accuracy and precision. PANI-KF exhibits remarkable promise as a sorbent for the extraction and enrichment of pesticide residues in aqueous samples, thereby contributing to the advancement of pesticide residue determination methodologies.
Collapse
Affiliation(s)
- Bin Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - ShuangJiao Xu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenxuan Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - Yuwei Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - Zhanwu Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Department of Pharmacy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Lei Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xia Xu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China.
| | - Di Chen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Majd M, Nojavan S, Maghsoudi M. Preparation of electrospun polyacrylonitrile/ϒ-cyclodextrin metal–organic framework nanofibers for extraction of multi-classes herbicides from cereal samples before HPLC-UV analysis. Food Chem 2022; 393:133350. [DOI: 10.1016/j.foodchem.2022.133350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 01/06/2023]
|
5
|
Li M, Li P, Han Y, Han D, Yan H. Rapid and inexpensive nylon-66-filter solid-phase extraction followed by gas chromatography tandem mass spectrometry for analyzing perfluorinated carboxylic acids in milk. J Chromatogr A 2022; 1677:463288. [DOI: 10.1016/j.chroma.2022.463288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
|
6
|
Farajzadeh MA, Niazi S, Sattari Dabbagh M. Development of a magnetic dispersive solid phase extraction method by employing folic acid magnetic nanoparticles as an effective, green, and reliable sorbent followed by dispersive liquid-liquid microextraction for the extraction and preconcentration of seven pesticides from fruit juices. Mikrochim Acta 2021; 188:314. [PMID: 34462821 DOI: 10.1007/s00604-021-04970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
Folic acid magnetic nanoparticles have been prepared and utilized as an effective and reliable sorbent in magnetic dispersive solid phase extraction combined with dispersive liquid-liquid microextraction for the extraction of seven pesticides from different juices before their determination by gas chromatography-flame ionization detector. The sorbent is prepared through ball milling process using a proper mixture of folic acid and magnetic iron oxide. Characterization of the sorbent was done with X-ray diffraction pattern, scanning electron microscopy, and vibrating sample magnetometry. In the current study, limits of detection were in the range 0.12-0.33 μg L-1. Relative standard deviations at a concentration of 40 μg L-1 of each analyte were in the ranges of 2.15-5.14% for intra-day (n = 6) and 3.78-6.91% for inter-day (n = 4) precisions. Extraction recoveries and enrichment factors were obtained in the ranges of 70-88 % and 566-708, respectively. The performance of the method was evaluated by determination the selected pesticides in different samples. Graphical Abstract.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran. .,Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Shokoufeh Niazi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
7
|
Marzi Khosrowshahi E, Farajzadeh MA, Tuzen M, Afshar Mogaddam MR, Nemati M. Application of magnetic carbon nano-onions in dispersive solid-phase extraction combined with DLLME for extraction of pesticide residues from water and vegetable samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3592-3604. [PMID: 34308461 DOI: 10.1039/d1ay00861g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A dispersive solid-phase microextraction method based on magnetic carbon nano-onions (MCNOs) was developed for the extraction and preconcentration of some pesticides from water and vegetable samples. For more cleanup and preconcentration, a dispersive liquid-liquid microextraction (DLLME) method was employed after performing the first step. In this method, firstly, MCNOs were prepared and then used for adsorption of the analytes from the sample solution. After that, the adsorbed analytes were eluted with an appropriate water-miscible organic solvent and used as a dispersive solvent in the following DLLME procedure. The extracted analytes were quantified by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. Various factors affecting the method efficiency such as sorbent weight, salt effect, pH, temperature, and type and volume of eluent and extraction solvent were optimized. This method showed wide linear ranges with a coefficient of determination ≥ 0.994, and low limits of detection (0.001-0.005 ng mL-1) and quantification (0.003-0.019 ng mL-1) under optimal conditions. Also, a good precision (relative standard deviation ≤ 8.6%) for five replicates and a satisfactory accuracy (mean relative recoveries between 82 and 99%) were obtained. It can be considered as an efficient and environment friendly method for the extraction of analytes from vegetable and fruit juices and water samples.
Collapse
|