1
|
Tang Z, Lv S, Liu D, Liu X, Zhou Z, Wang P. A ratiometric fluorescence method for the detection of diquat by a large Stokes shift fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124889. [PMID: 39116595 DOI: 10.1016/j.saa.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Pesticide residues are currently a prominent concern for food safety, and the development of a rapid, convenient, and accurate method for detecting pesticide residues is crucial to ensure the quality of agricultural products. In this study, a small molecule fluorescent probe based on biphenyl disulfonic acid (BDSA) was designed and prepared, and a sensitive, specific, and rapid detection method for diquat (DQ) and paraquat (PQ) was developed. The fluorescent molecule (BDSA-NDA) was synthesized through amide reaction between BDSA and 1,8-naphthalic anhydride, which exhibited cyan fluorescence (480 nm) when excited at 305 nm in aqueous solution with a large Stokes shift (>150 nm). Diquat and paraquat were found to quench the fluorescence of the probe through internal filtration effect (IFE) and photoelectron transfer (PET). Moreover, diquat possessed a large conjugated structure that emitted fluorescence at 340 nm which was assembled into a pair of ratio fluorescence with BDSA-NDA. Under optimized experimental conditions, the developed method achieved detection limits of 0.003 mg/L for diquat and 0.202 mg/L for paraquat. Furthermore, it could identify paraquat doped in diquat formulations. Additionally, when applied to environmental water samples as well as rice and urine, this detection method demonstrated good recovery rates (water: 96.2-100.6 %, rice: 93.5-101.9 %, urine: 96-103.7 %), meeting actual sample detection requirements effectively. This work presents a novel approach for rapidly detecting diquat and paraquat residues which holds practical application value in areas such as pesticide residue analysis in foods, environmental or clinical samples.
Collapse
Affiliation(s)
- Zichen Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Shengchen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
2
|
Cao Y, Cao Z, Wang P, Zhao L, Zhang S, Shi Y, Liu L, Zhu H, Wang L, Cheng Z, Sun H. Source and bioavailability of quaternary ammonium compounds (QACs) in dust: Implications for Nationwide Exposure in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136268. [PMID: 39471614 DOI: 10.1016/j.jhazmat.2024.136268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Quaternary ammonium compounds (QACs), widely used in various disinfectants products during the COVID-19 Pandemic, raised the concerns on their exposure and health effect. To date, the sources of QACs in indoor environments have been largely ignored. Additionally, there is no information on the nationwide human exposure assessment of QACs in China after the COVID-19. Herein, analysis of QACs in household products, including personal care (n = 27), cleaning (n = 6) and disinfection products (n = 11) from different manufacturing companies further confirmed there are extensive application of QACs in household products, raising their potential exposure to humans. QACs were frequently detected in indoor dust samples (n = 370) from 111 cities of 31 provinces/municipalities across China, with median concentration of 6778 ng/g. Benzalkyldimethylammonium compounds (BACs) and alkyltrimethylammonium compounds (ATMACs) were identified as the dominant QACs in dust samples, with the proportions of 44 % and 46 %, respectively. The in vivo bioavailability experiment (C57BL/6 male mice) showed that the relative bioavailability (RBA) of QACs through dust ingestion ranged from 5.08 % to 66.3 % and 60.3 % to 118 % in the low and high-dose group, respectively. Compared to the pre-adjustment scenario of RBA values, the exposure risk of QACs was overestimated by 2.23 - 5.14 times.
Collapse
Affiliation(s)
- Yuhao Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pingping Wang
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lu Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Chen Y, Huang Y, Chen S, Gao L, Zhang S, Dai H, Zeng B. A pressure-colorimetric multimode system with photothermal activated multiple rolling signal amplification for ovarian cancer biomarker detection. Talanta 2023; 265:124876. [PMID: 37390673 DOI: 10.1016/j.talanta.2023.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Utilizing the photothermal effect to activate enzyme activity, realize signal conversion and amplification show promising prospects in biosensing. Herein, a pressure-colorimetric multi-mode bio-sensor was proposed through the multiple rolling signal amplification strategy of photothermal control. Under NIR light radiation, the Nb2C MXene labeled photothermal probe caused notable temperature elevation on a multi-functional signal conversion paper (MSCP), leading to decomposition of thermal responsive element and in-situ formation of Nb2C MXene/Ag-Sx hybrid. The generation of Nb2C MXene/Ag-Sx hybrid accompanied with valid color change from pale yellow to dark brown on MSCP. Moreover, the Ag-Sx as a signal amplification element enhanced the NIR light absorption to further improve the photothermal effect of Nb2C MXene/Ag-Sx thereby induce cyclic in situ production of Nb2C MXene/Ag-Sx hybrid with rolling enhanced photothermal effect. Subsequently, the continuously enhanced photothermal effect rolling activated catalase-like activity of Nb2C MXene/Ag-Sx, which accelerated the decomposition of H2O2 and promoted the pressure elevation. Therefore, the rolling-enhanced photothermal effect and rolling activated catalase-like activity of Nb2C MXene/Ag-Sx considerately amplified the pressure and color change. Making full use of multi-signal readout conversion and rolling signal amplification, accurate results can be obtained in a short time, whether in the laboratory or in the patient's homes.
Collapse
Affiliation(s)
- Yanjie Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| | - Yitian Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Sisi Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China.
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China.
| | - Baoshan Zeng
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
4
|
An J, Wang X, Song H, Zhao T, Ren H, Kang W, Dong Z, Niu L, Shi H. Simultaneous determination of four sedative-hypnotics in human urine based on dendritic structured magnetic nanomaterials. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Synthesis of the Magnetically Nanoporous Organic Polymer Fe3O4@SiO2-NH2-COP and Its Application in the Determination of Sulfonamide Residues in Surface Water Surrounding a Cattle Farm. Bioinorg Chem Appl 2022; 2022:6453609. [PMID: 35502220 PMCID: PMC9056257 DOI: 10.1155/2022/6453609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Efficient extractions of trace antibiotic residues in the environment are a key factor for accurate quantification of the residues. A new nanoporous material, namely, magnetically covalent organic polymer (MCOP, Fe3O4@SiO2-NH2-COP) was synthesized in this work and was used for magnetic solid-phase extraction (MSPE). The combination of MSPE with high-performance liquid chromatography separation together with ultraviolet detection (HPLC-UV) was established as an effective method for the determination of four sulfonamide (SA) residues in surface water surrounding a cattle farm. The synthesized magnetic material was characterized by SEM, TEM, FT-IR, magnetic properties measurement system (MPMS), and nitrogen gas porosimetry. The material possessed many attractive features, such as a unique microporous structure, a larger specific surface area (137.93 m2·g−1) than bare Fe3O4 (24.84 m2·g−1), high saturation magnetization (50.5 emu·g−1), open adsorption sites, and high stability. The influencing parameters, including pH, the used amount of MCOPs, the type of eluent, adsorption solution, and desorption time, were optimized. Under the optimized conditions, the method conferred good linearity ranges (R2 ≥ 0.9990), low detection limits (S/N = 3, LOD, 0.10–0.25 μg·L−1), and satisfactory recoveries (79.7% to 92.2%). The enrichment factor (EF) for the four SAs was 34.13–38.86. The relative standard deviations of intraday (n = 5) and of interday (n = 3) were less than 4.8% and 8.9%, respectively. The equilibria between extraction and desorption for SAs could be reached within 150 s. The proposed method was sensitive and convenient for detecting SA residues in complex environmental matrices, and the successful application of the new MCOPs as an adsorbent was demonstrated.
Collapse
|
6
|
Yu X, Zhong T, Zhang Y, Zhao X, Xiao Y, Wang L, Liu X, Zhang X. Design, Preparation, and Application of Magnetic Nanoparticles for Food Safety Analysis: A Review of Recent Advances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:46-62. [PMID: 34957835 DOI: 10.1021/acs.jafc.1c03675] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review (with 126 references) aims at providing an updated overview of the recent developments and innovations of the preparation and application of magnetic nanoparticles for food safety analysis. During the past two decades, various magnetic nanoparticles with different sizes, shapes, and surface modifications have been designed, synthesized, and characterized with the prospering development of material science. Analytical scientists and food scientists are among the ones who bring these novel materials from laboratories to commercial applications. Powerful and versatile surface functional groups and high surface to mass ratios make these magnetic nanoparticles useful tools for high-efficiency capture and preconcentration of certain molecules, even when they exist in trace levels or complicated food matrices. This is why more and more methods for sensitive detection and quantification of hazards in foods are developed based on these magic magnetic tools. In this review, the principles and superiorities of using magnetic nanoparticles for food pollutant analysis are first introduced, like the mechanism of magnetic solid phase extraction, a most commonly used method for food safety-related sample pretreatment. Their design and preparation are presented afterward, alongside the mechanisms underlying their application for different analytical purposes. After that, recently developed magnetic nanoparticle-based methods for dealing with food pollutants such as organic pollutants, heavy metals, and pathogens in different food matrices are summarized in detail. In the end, some humble outlooks on future directions for work in this field are provided.
Collapse
Affiliation(s)
- Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Yujia Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Zhang J, Dang X, Dai J, Hu Y, Chen H. Simultaneous detection of eight phenols in food contact materials after electrochemical assistance solid-phase microextraction based on amino functionalized carbon nanotube/polypyrrole composite. Anal Chim Acta 2021; 1183:338981. [PMID: 34627510 DOI: 10.1016/j.aca.2021.338981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023]
Abstract
An electrochemical assistance solid-phase microextraction (EA-SPME) was developed based on amino functionalized multi-walled carbon nanotube/polypyrrole (MWCNTs-NH2/PPy) composite coating. It was applied for the extraction of eight phenols in food contact material, including 2-chlorophenol, o-cresol, m-cresol, 2,4-dichlorophenol, 4-tert-butylphenol, 4-chlorophenol, 4-tertoctylphenol and alpha-naphthol. MWCNTs-NH2/PPy coating was characterized by scanning electron microscopy, transmission electron microscope, X-ray energy spectrometer, X-ray diffraction, Fourier transform infrared and thermogravimetric analysis. The adsorption mechanism of phenols on the composite coatings was investigated. The coating modified steel-wire as an extraction fiber has good electroconductibility, reproducibility and long service life. A determination method for the eight phenols was established by EA-SPME coupled with gas chromatography-flame ionization detection. Under the optimal experimental conditions (extraction temperature: 40 °C; extraction time: 30 min; stirring rate: 600 rpm; NaCl concentration: 0.15 g mL-1; desorption temperature: 250 °C and desorption time: 4 min), the detection linear range was 0.005-50 μg L-1 (R2>0.99), and the detection limit was 0.001-0.1 μg L-1 (S/N = 3). For the quintuple analysis of 50 μg L-1 phenols, the single fiber RSDs were 2.2-12.4%, and the fiber-to-fiber RSDs were 1.9-10.5%. The method was used to detect the migration quantity of the eight phenols from five canned packaging materials, which showed satisfactory recovery 87.3-118.9%.
Collapse
Affiliation(s)
- Jiayang Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xueping Dang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Jiahuan Dai
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Huaixia Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| |
Collapse
|
8
|
Targuma S, Njobeh PB, Ndungu PG. Current Applications of Magnetic Nanomaterials for Extraction of Mycotoxins, Pesticides, and Pharmaceuticals in Food Commodities. Molecules 2021; 26:4284. [PMID: 34299560 PMCID: PMC8303358 DOI: 10.3390/molecules26144284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Environmental pollutants, such as mycotoxins, pesticides, and pharmaceuticals, are a group of contaminates that occur naturally, while others are produced from anthropogenic sources. With increased research on the adverse ecological and human health effects of these pollutants, there is an increasing need to regularly monitor their levels in food and the environment in order to ensure food safety and public health. The application of magnetic nanomaterials in the analyses of these pollutants could be promising and offers numerous advantages relative to conventional techniques. Due to their ability for the selective adsorption, and ease of separation as a result of magnetic susceptibility, surface modification, stability, cost-effectiveness, availability, and biodegradability, these unique magnetic nanomaterials exhibit great achievement in the improvement of the extraction of different analytes in food. On the other hand, conventional methods involve longer extraction procedures and utilize large quantities of environmentally unfriendly organic solvents. This review centers its attention on current applications of magnetic nanomaterials and their modifications in the extraction of pollutants in food commodities.
Collapse
Affiliation(s)
- Sarem Targuma
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick B. Njobeh
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick G. Ndungu
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|