1
|
Yu M, Yu M, Qian F. Purification of plasmid DNA using a novel two stage chromatography process. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1250:124381. [PMID: 39612883 DOI: 10.1016/j.jchromb.2024.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
The chromatography process of large-scale plasmid purification with high efficiency and low cost has always been a major challenge. We established a two-step plasmid chromatography purification process combining multimodal and thiophilic chromatography with an overall chromatography yield of nearly 70%. Capto Core 700, a multimodal core-shell particle, was firstly used to remove the impurities from the crude lysate. The effects of different experimental conditions on chromatography recovery and impurity removal were screened. Compared to conventional size exclusion chromatography, the sample load and flow rate of this step were enhanced by 40-fold and 5-fold, respectively, while maintaining a 90% yield. For the thiophilic chromatography (Capto PlasmidSelect), the method of Design of Experiments (DoEs) was used to study the influence of parameters on the results. The effects of ammonium sulfate concentration, sodium chloride concentration and flowrate in the elution phase were studied and optimized with a central composite design model consisting of 17 experiments. The versatility of this process was demonstrated by successfully purifying three different lentiviral packaging plasmids (pLP1, pLP2 and pLP/VSVG) and the target plasmid containing green fluorescent protein (GFP). Purified plasmids consistently achieved a supercoiled purity of at least 90% with endotoxin levels below 5 EU/mg. Lentiviral vectors packaged using these plasmids exhibited high infectious titers of 1 × 107 TU/mL, thereby verifying the process applicability for diverse plasmid purification requirements.
Collapse
Affiliation(s)
- Minglei Yu
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai 200438, China; Fast Trak China, Cytiva, Shanghai 201203, China.
| | - Mengran Yu
- Fast Trak China, Cytiva, Shanghai 201203, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Zarubin M, Andreev E, Kravchenko E, Pinaeva U, Nechaev A, Apel P. Developing tardigrade-inspired material: Track membranes functionalized with Dsup protein for cell-free DNA isolation. Biotechnol Prog 2024; 40:e3478. [PMID: 38699905 DOI: 10.1002/btpr.3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
When developing functionalized biomaterials, the proteins from extremophilic organisms, in particular unique tardigrade disordered proteins, are of great value. The damage suppressor protein (Dsup), initially discovered in the tardigrade Ramazzottius varieornatus and found to be an efficient DNA protector under oxidative and irradiation stress, has been hypothesized to possess a good potential for the development of the material, which can isolate cell-free DNA. With this in mind, DNA-nonadsorbing polyethylene terephthalate track membranes have been functionalized using the Dsup protein via covalent bonding with glutaraldehyde. The filtration experiments have verified the ability of track membranes with the immobilized Dsup protein to adsorb cell-free DNA, with an accumulation capacity of 70 ± 19 mg m-2. The resulting track membrane-based biomaterial might be used in various devices for filtration and separation of cell-free DNA molecules from biological solutions and environmental samples, and also for their accumulation, storage, and further manipulation.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Dzhelepov Laboratory of Nuclear Problems, International Intergovernmental Organization Joint Institute for Nuclear Research (DLNP JINR), Dubna, Russia
| | - Evgeny Andreev
- Flerov Laboratory of Nuclear Reactions, International Intergovernmental Organization Joint Institute for Nuclear Research (FLNR JINR), Dubna, Russia
| | - Elena Kravchenko
- Dzhelepov Laboratory of Nuclear Problems, International Intergovernmental Organization Joint Institute for Nuclear Research (DLNP JINR), Dubna, Russia
| | - Uliana Pinaeva
- Flerov Laboratory of Nuclear Reactions, International Intergovernmental Organization Joint Institute for Nuclear Research (FLNR JINR), Dubna, Russia
| | - Alexander Nechaev
- Flerov Laboratory of Nuclear Reactions, International Intergovernmental Organization Joint Institute for Nuclear Research (FLNR JINR), Dubna, Russia
| | - Pavel Apel
- Flerov Laboratory of Nuclear Reactions, International Intergovernmental Organization Joint Institute for Nuclear Research (FLNR JINR), Dubna, Russia
| |
Collapse
|
3
|
Ribeiro J, Luís MÂ, Rodrigues B, Santos FM, Mesquita J, Boto R, Tomaz CT. Cryogels and Monoliths: Promising Tools for Chromatographic Purification of Nucleic Acids. Gels 2024; 10:198. [PMID: 38534616 DOI: 10.3390/gels10030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The increasing demand for highly pure biopharmaceuticals has put significant pressure on the biotechnological industry to innovate in production and purification processes. Nucleic acid purification, crucial for gene therapy and vaccine production, presents challenges due to the unique physical and chemical properties of these molecules. Meeting regulatory standards necessitates large quantities of biotherapeutic agents of high purity. While conventional chromatography offers versatility and efficiency, it suffers from drawbacks like low flow rates and binding capacity, as well as high mass transfer resistance. Recent advancements in continuous beds, including monoliths and cryogel-based systems, have emerged as promising solutions to overcome these limitations. This review explores and evaluates the latest progress in chromatography utilizing monolithic and cryogenic supports for nucleic acid purification.
Collapse
Affiliation(s)
- João Ribeiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marco  Luís
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Bruno Rodrigues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Renato Boto
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
4
|
Ferreira PL, Marie H, Berger T, Edelmann B, Rammo O, Sousa F. Evaluation of novel chromatographic prototypes for supercoiled plasmid DNA polishing. Front Bioeng Biotechnol 2024; 11:1296444. [PMID: 38249801 PMCID: PMC10797707 DOI: 10.3389/fbioe.2023.1296444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Since the world first approved gene therapeutics, nucleic acid-based therapies have gained prominence. Several strategies for DNA-based therapy have been approved, and numerous clinical trials for plasmid DNA (pDNA)-based vaccines are currently in development. Due to the rising interest in pDNA for vaccination and gene therapy, plasmid manufacturing must become more effective. One of the most critical steps is downstream processing, involving isolation and purification procedures. To comply with the regulatory guidelines, pDNA must be available as a highly purified, homogeneous preparation of supercoiled pDNA (sc pDNA). This process undertakes several challenges, primarily due to the diversity of molecules derived from the producer organism. In this study, different resins were tested for the adsorption and selective polishing of sc pDNA. To identify optimal pDNA adsorption conditions, batch and column assays were performed with different resins while promoting electrostatic and hydrophobic interactions. The effect of ionic strength, pH, and contact time were evaluated and optimized. Additionally, static and dynamic binding capacities were determined for the selected resins. Analytical chromatography and agarose gel electrophoresis were used to assess the selectivity of the most promising resins toward sc pDNA isoform. Also, genomic DNA, endotoxins, and proteins were quantified to characterize the final sc pDNA quality. At the same time, the recovery and purity yields were evaluated by quantification of sc pDNA after the purification procedure. Overall, the results of the chromatographic assays using agmatine- and arginine-based resins have shown promising potential for sc pDNA polishing. Both resins demonstrated excellent binding capacity for pDNA, with agmatine outperforming arginine-based resin in terms of capacity. However, arginine-based resin exhibited a superior pDNA recovery yield, reaching a notable 52.2% recovery compared to 10.09% from agmatine. Furthermore, both resins exhibited high relative purity levels above 90% for the sc pDNA. The comprehensive characterization of the recovered sc pDNA also revealed a significant reduction in gDNA levels, reinforcing the potential of these prototypes for obtaining high-quality and pure sc pDNA. These findings highlight the promising applications of both resins in scalable pDNA purification processes for gene therapy and biopharmaceutical applications.
Collapse
Affiliation(s)
- Pedro L. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Tim Berger
- Merck Life Science KGaA, Darmstadt, Germany
| | | | | | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
5
|
Triantafyllou N, Sarkis M, Krassakopoulou A, Shah N, Papathanasiou MM, Kontoravdi C. Uncertainty quantification for gene delivery methods: A roadmap for pDNA manufacturing from phase I clinical trials to commercialization. Biotechnol J 2024; 19:e2300103. [PMID: 37797343 DOI: 10.1002/biot.202300103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/01/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
The fast-growing interest in cell and gene therapy (C>) products has led to a growing demand for the production of plasmid DNA (pDNA) and viral vectors for clinical and commercial use. Manufacturers, regulators, and suppliers need to develop strategies for establishing robust and agile supply chains in the otherwise empirical field of C>. A model-based methodology that has great potential to support the wider adoption of C> is presented, by ensuring efficient timelines, scalability, and cost-effectiveness in the production of key raw materials. Specifically, key process and economic parameters are identified for (1) the production of pDNA for the forward-looking scenario of non-viral-based Chimeric Antigen Receptor (CAR) T-cell therapies from clinical (200 doses) to commercial (40,000 doses) scale and (2) the commercial (40,000 doses) production of pDNA and lentiviral vectors for the current state-of-the-art viral vector-based CAR T-cell therapies. By applying a systematic global sensitivity analysis, we quantify uncertainty in the manufacturing process and apportion it to key process and economic parameters, highlighting cost drivers and limitations that steer decision-making. The results underline the cost-efficiency and operational flexibility of non-viral-based therapies in the overall C> supply chain, as well as the importance of economies-of-scale in the production of pDNA.
Collapse
Affiliation(s)
- Niki Triantafyllou
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Miriam Sarkis
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | | | - Nilay Shah
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Maria M Papathanasiou
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Cleo Kontoravdi
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
6
|
Kralj Š, Kodermac ŠM, Bergoč I, Kostelec T, Podgornik A, Štrancar A, Černigoj U. Effect of plasmid DNA isoforms on preparative anion exchange chromatography. Electrophoresis 2023; 44:1953-1966. [PMID: 37271857 DOI: 10.1002/elps.202300035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Increased need for plasmid DNA (pDNA) with sizes above 10 kbp (large pDNA) in gene therapy and vaccination brings the need for its large-scale production with high purity. Chromatographic purification of large pDNA is often challenging due to low process yields and column clogging, especially using anion-exchanging columns. The goal of our investigation was to evaluate the mass balance and pDNA isoform composition at column outlet for plasmids of different sizes in combination with weak anion exchange (AEX) monolith columns of varying channel size (2, 3 and 6 µm channel size). We have proven that open circular pDNA (OC pDNA) isoform is an important driver of reduced chromatographic performance in AEX chromatography. The main reason for the behaviour is the entrapment of OC pDNA in chromatographic supports with smaller channel sizes. Entrapment of individual isoforms was characterised for porous beads and convective monolithic columns. Convective entrapment of OC pDNA isoform was confirmed on both types of stationary phases. Porous beads in addition showed a reduced recovery of supercoiled pDNA (on an 11.6 kbp plasmid) caused by diffusional entrapment within the porous structure. Use of convective AEX monoliths or membranes with channel diameter >3.5 µm has been shown to increase yields and prevent irreversible pressure build-up and column clogging during purification of plasmids at least up to 16 kbp in size.
Collapse
Affiliation(s)
- Špela Kralj
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | | | - Ines Bergoč
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | | | - Aleš Podgornik
- Department of Chemical Engineering and Technical Safety, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- COBIK, Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Urh Černigoj
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| |
Collapse
|
7
|
Lu J, Wang G, Yang C, Peng Z, Yang L, Du B, Guo C, Sui S, Wang J, Li J, Wang R, Wang J. Study on the construction technology of β-alanine synthesizing Escherichia coli based on cellulosome assembly. Front Bioeng Biotechnol 2023; 11:1202483. [PMID: 37334270 PMCID: PMC10273014 DOI: 10.3389/fbioe.2023.1202483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction: β-Alanine is the only β-amino acid in nature; it is widely used in food additives, medicines, health products, and surfactants. To avoid pollution caused by traditional production methods, the synthesis of β-alanine has been gradually replaced by microbial fermentation and enzyme catalysis, which is a green, mild, and high-yield biosynthesis method. Methods: In this study, we constructed an Escherichia coli recombinant strain for efficient β-alanine production using glucose as the raw material. The microbial synthesis pathway of L-lysine-producing strain, Escherichia coli CGMCC 1.366, was modified using gene editing by knocking out the aspartate kinase gene, lysC. The catalytic efficiency and product synthesis efficiency were improved by assembling key enzymes with cellulosome. Results: By-product accumulation was reduced by blocking the L-lysine production pathway, thereby increasing the yield of β-alanine. In addition, catalytic efficiency was improved by the two-enzyme method to further increase the β-alanine content. The key cellulosome elements, dockerin (docA) and cohesin (cohA), were combined with L-aspartate-α-decarboxylase (bspanD) from Bacillus subtilis and aspartate aminotransferase (aspC) from E.coli to improve the catalytic efficiency and expression level of the enzyme. β-alanine production reached 7.439 mg/L and 25.87 mg/L in the two engineered strains. The β-alanine content reached 755.465 mg/L in a 5 L fermenter. Discussion: The content of β-alanine synthesized by constructed β-alanine engineering strains were 10.47 times and 36.42 times higher than the engineered strain without assembled cellulosomes, respectively. This research lays the foundation for the enzymatic production of β-alanine using a cellulosome multi-enzyme self-assembly system.
Collapse
Affiliation(s)
- Jie Lu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guodong Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Cuiping Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Zehao Peng
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Lu Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Bowen Du
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Chuanzhuang Guo
- Zhucheng Dongxiao Biotechnology Co., Ltd., Zhucheng, Shandong, China
| | - Songsen Sui
- Zhucheng Dongxiao Biotechnology Co., Ltd., Zhucheng, Shandong, China
| | - Jianbin Wang
- Zhucheng Dongxiao Biotechnology Co., Ltd., Zhucheng, Shandong, China
| | - Junlin Li
- Zhucheng Dongxiao Biotechnology Co., Ltd., Zhucheng, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
8
|
Carapito R, Bernardo SC, Pereira MM, Neves MC, Freire MG, Sousa F. Multimodal ionic liquid-based chromatographic supports for an effective RNA purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
9
|
Beck J, Biechele M, Repik C, Gruber P, Furtmüller PG, Hahn R. Desorption of plasmid DNA from anion exchangers: Salt concentration at elution is independent of plasmid size and load. J Sep Sci 2023; 46:e2200943. [PMID: 36807776 DOI: 10.1002/jssc.202200943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/20/2023]
Abstract
Detailed studies on the sorption behavior of plasmids on anion exchangers are rare compared to proteins. In this study, we systematically compare the elution behavior of plasmid DNA on three common anion exchange resins using linear gradient and isocratic elution experiments. Two plasmids of different lengths, 8 and 20 kbp, were studied and their elution characteristics were compared to a green fluorescent protein. Using established methods for determining retention characteristics of biomolecules in ion exchange chromatography lead to remarkable results. In contrast to the green fluorescent protein, plasmid DNA consistently elutes at one characteristic salt concentration in linear gradient elution. This salt concentration was the same independent of plasmid size but differed slightly for different resins. The behavior is consistent also at preparative loadings of plasmid DNA. Thus, only a single linear gradient elution experiment is sufficient to design elution in a process scale capture step. At isocratic elution conditions, plasmid DNA elutes only above this characteristic concentration. Even at slightly lower concentrations most plasmids remain tightly bound. We hypothesize, that the desorption is accompanied by a conformational change leading to a reduced number of available negative charges for binding. This explanation is supported by structural analysis before and after elution.
Collapse
Affiliation(s)
- Jürgen Beck
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Matthias Biechele
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christoph Repik
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, Austria
| | - Petra Gruber
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rainer Hahn
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
Baptista B, Oliveira ASR, Mendonça P, Serra AC, Coelho JFJ, Sousa F. pH-responsive nanoparticles based on POEOMA-b-PDPA block copolymers for RNA encapsulation, protection and cell delivery. BIOMATERIALS ADVANCES 2023; 145:213267. [PMID: 36599197 DOI: 10.1016/j.bioadv.2022.213267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The use of gene-based products, such as DNA or RNA, is increasingly being explored for various innovative therapies. However, the success of these strategies is highly dependent on the effective delivery of these biomolecules to target cells. Therefore, the development of pH-responsive nanoparticles comprises the creation of intelligent delivery systems with high therapeutic efficiency. In this work, the pH-responsiveness of the poly(2-(diisopropylamino)ethyl methacrylate)) (PDPA) block was investigated for the encapsulation and delivery of small RNAs (sRNA) to cancer cells. The pH responsiveness was dependent on the protonation profile of the tertiary amines of PDPA, which directly affected the electrostatic interactions established with RNA. Thus, block copolymers based on poly(oligo(ethylene oxide) methyl ether methacrylate) (POEOMA) and PDPA, POEOMA-b-PDPA, were synthesized by supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP). The structure of the block copolymers was characterized by size exclusion chromatography and 1H NMR spectroscopy. The copolymers allowed effective complexation of model sRNAs and a pre-miRNA with efficiencies of about 89 % and 91 %, respectively. The characterization by dynamic light scattering revealed that these systems had sizes between 76 and 1375 nm. It was also found that the morphology of the polyplexes depended on the pH, since the preparation at a pH lower than the pKa of the copolymers resulted in spherical but polydisperse particles, while higher pH values resulted in nanoparticles with more homogeneous size, but altered morphology. Moreover, due to pH-responsiveness, it was achieved the release of RNA at pH higher than the pKa of the copolymers, while maintaining its integrity. The polyplexes also showed a high potential to protect RNA from RNases. The transfection of a lung cancer model (A549) and fibroblast cell lines showed that these polyplexes did not cause cell toxicity. In addition, the polyplexes enabled the effective transfection of the A549 cell line with pre-miRNA-29b and miRNA-29b, resulting in a decrease of expression levels of the target DNMT3B gene by approximately 51 % and 47 %, respectively. Overall, the POEOMA-b-PDPA copolymers proved to be a promising strategy for developing responsive delivery systems, that can play a critical role in some diseases, such as cancer, where pH varies between the intra and extracellular environments.
Collapse
Affiliation(s)
- Bruno Baptista
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Andreia S R Oliveira
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Patrícia Mendonça
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Arménio C Serra
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Jorge F J Coelho
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
11
|
Valente JFA, Carreira TS, Dias JR, Sousa F, Alves N. Arginine-Modified 3D-Printed Chromatographic Supports. Pharmaceutics 2022; 14:2266. [PMID: 36365085 PMCID: PMC9695954 DOI: 10.3390/pharmaceutics14112266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 04/20/2024] Open
Abstract
The increasing progression of biopharmaceutical-based therapies highlights the demand for efficient chromatographic methods that can be used to purify the desired biomolecules (e.g., nucleic acids, enzymes, or monoclonal antibodies) which are presently under consideration in clinical trials or approved by the Food and Drug Administration. These molecules present distinct chemical and structural properties, which are critical cues for the development and production of adequate chromatographic supports. Until now, it has not been possible to fully control the characteristics of the chromatographic matrices to assure the total reproducibility of their structure and packing. Meanwhile, three-dimensional printing (3DP) is in the early stage of its use in the production of chromatographic supports as a fast, very precise, and reproducible methodology. Although 3DP can provide excellent performance properties to the chromatographic structures, it cannot, per se, lead to high-quality pharmaceutical products. However, the association of affinity ligands, such as amino acids, which is possible in 3DP, could enable the attainment of high-purity yields of the desired molecules. Beyond the amino acids most widely studied as chromatographic ligands, arginine has been successfully immobilized on different chromatographic supports (namely, agarose bead matrices, macroporous matrices, and monoliths) to achieve extra-pure gene therapy products. In this research, we studied the immobilization of arginine on 3DP chromatographic supports, evaluating the stability of the ligand/chromatographic support linkage under different chromatographic conditions to determine the robustness of these new prototypes. Moreover, we also applied plasmid DNA samples to these supports to observe the practical behaviour of the developed arginine 3DP chromatographic structures.
Collapse
Affiliation(s)
- Joana F. A. Valente
- CDRSP-PL—Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Tiago Soares Carreira
- CDRSP-PL—Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Juliana R. Dias
- CDRSP-PL—Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Fani Sousa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal
| | - Nuno Alves
- CDRSP-PL—Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| |
Collapse
|
12
|
Applications of Cryostructures in the Chromatographic Separation of Biomacromolecules. J Chromatogr A 2022; 1683:463546. [DOI: 10.1016/j.chroma.2022.463546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/20/2022]
|
13
|
Bernardo SC, Carapito R, Neves MC, Freire MG, Sousa F. Supported Ionic Liquids Used as Chromatographic Matrices in Bioseparation-An Overview. Molecules 2022; 27:1618. [PMID: 35268719 PMCID: PMC8911583 DOI: 10.3390/molecules27051618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.
Collapse
Affiliation(s)
- Sandra C. Bernardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Márcia C. Neves
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| |
Collapse
|
14
|
Initial Screening of Poly(ethylene glycol) Amino Ligands for Affinity Purification of Plasmid DNA in Aqueous Two-Phase Systems. Life (Basel) 2021; 11:life11111138. [PMID: 34833014 PMCID: PMC8619368 DOI: 10.3390/life11111138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy and DNA vaccination are among the most expected biotechnological and medical advances for the coming years. However, the lack of cost-effective large-scale production and purification of pharmaceutical-grade plasmid DNA (pDNA) still hampers their wide application. Downstream processing, which is mainly chromatography-based, of pDNA remains the key manufacturing step. Despite its high resolution, the scaling-up of chromatography is usually difficult and presents low capacity, resulting in low yields. Alternative methods that are based on aqueous two-phase systems (ATPSs) have been studied. Although higher yields may be obtained, its selectivity is often low. In this work, modified polymers based on poly(ethylene glycol) (PEG) derivatisation with amino groups (PEG–amine) or conjugation with positively charged amino acids (PEG–lysine, PEG–arginine, and PEG–histidine) were studied to increase the selectivity of PEG–dextran systems towards the partition of a model plasmid. A two-step strategy was employed to obtain suitable pure formulations of pDNA. In the first step, a PEG–dextran system with the addition of the affinity ligand was used with the recovery of the pDNA in the PEG-rich phase. Then, the pDNA was re-extracted to an ammonium-sulphate-rich phase in the second step. After removing the salt, this method yielded a purified preparation of pDNA without RNA and protein contamination.
Collapse
|
15
|
Valente J, Pereira P, Sousa A, Queiroz J, Sousa F. Effect of Plasmid DNA Size on Chitosan or Polyethyleneimine Polyplexes Formulation. Polymers (Basel) 2021; 13:793. [PMID: 33807586 PMCID: PMC7962013 DOI: 10.3390/polym13050793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 01/22/2023] Open
Abstract
Gene therapy could be simply defined as a strategy for the introduction of a functional copy of desired genes in patients, to correct some specific mutation and potentially treat the respective disorder. However, this straightforward definition hides very complex processes related to the design and preparation of the therapeutic genes, as well as the development of suitable gene delivery systems. Within non-viral vectors, polymeric nanocarriers have offered an ideal platform to be applied as gene delivery systems. Concerning this, the main goal of the study was to do a systematic evaluation on the formulation of pDNA delivery systems based on the complexation of different sized plasmids with chitosan (CH) or polyethyleneimine (PEI) polymers to search for the best option regarding encapsulation efficiency, surface charge, size, and delivery ability. The cytotoxicity and the transfection efficiency of these systems were accessed and, for the best p53 encoding pDNA nanosystems, the ability to promote protein expression was also evaluated. Overall, it was showed that CH polyplexes are more efficient on transfection when compared with the PEI polyplexes, resulting in higher P53 protein expression. Cells transfected with CH/p53-pDNA polyplexes presented an increase of around 54.2% on P53 expression, while the transfection with the PEI/p53-pDNA polyplexes resulted in a 32% increase.
Collapse
Affiliation(s)
- J.F.A. Valente
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
- CDRsp—Centre Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - P. Pereira
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - A. Sousa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
| | - J.A. Queiroz
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
| | - F. Sousa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
| |
Collapse
|