1
|
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, Singh R, Sahoo G, Ewe D, Saurav K. Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chem Res Toxicol 2023; 36:1834-1863. [PMID: 38059476 PMCID: PMC10731662 DOI: 10.1021/acs.chemrestox.3c00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Collapse
Affiliation(s)
- Vishal Ahuja
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- University
Centre for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| | - Amanpreet Singh
- Department
of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab 140413, India
| | - Debarati Paul
- Amity
Institute of Biotechnology, AUUP, Noida, Uttar Pradesh 201313, India
| | - Diptarka Dasgupta
- Material
Resource Efficiency Division, CSIR-Indian
Institute of Petroleum, Dehradun 248005, India
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Sounak Ghosh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Roshani Singh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Gobardhan Sahoo
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Daniela Ewe
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| |
Collapse
|
2
|
Liang X, Christensen JH, Bucheli TD, Nielsen NJ. Source-Supported Suspect Screening (4S) of Phytotoxins in Terrestrial and Aquatic Environments: A Field Study of Lupinus angustifolius L. (Blue Lupin). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2333-2340. [PMID: 36723500 DOI: 10.1021/acs.est.2c05387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phytotoxins (PTs) are bioactive secondary metabolites produced by plants. More recently, they have been recognized as important aquatic micropollutants. Despite that, only a few PTs have been detected and reported in terrestrial and aquatic environments, while their source and leaching pathways remain largely unclear. Herein, we established a novel approach named source-supported suspect screening (4S) to discover PTs in different environments, investigate their environmental occurrences, identify their sources, and initiate discussions on their leaching mechanisms. The 4S-approach was demonstrated on a five-month Lupinus angustifolius L. (L. angustifolius) crop field experiment, where plant, topsoil, drainage water, and surface water were sampled and analyzed. As a result, 72 PTs (flavonoids and alkaloids) were identified at high confidence, with 10 PTs fully confirmed. Fifty-three PTs detected in soil or water were linked to L. angustifolius, among which 26 PTs were coherently detected in all three environmental compartments. The occurrence and abundance of PTs in terrestrial soil and aquatic environments were influenced by the plant growth stage and precipitation. Soil served as an intermedium when PTs leached from L. angustifolius to the drainage water, while the degree of retardation and eventual occurrence in the aquatic environment depended on both PTs and soil physico-chemical properties.
Collapse
Affiliation(s)
- Xiaomeng Liang
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | - Nikoline Juul Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Development of an HPLC-MS/MS Method for the Determination of Alkaloids in Lupins. Molecules 2023; 28:molecules28041531. [PMID: 36838519 PMCID: PMC9967435 DOI: 10.3390/molecules28041531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Lupin alkaloids (LAs) represent a class of toxic secondary metabolites in plants, in particular in Lupinus spp.; they are produced as a defense mechanism due to their strong bitter taste and are very dangerous for human and animals. In this work, a sensitive and reliable high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analytical method for the identification and quantification of thirteen lupin alkaloids was developed and validated according to FDA guidelines. Efficient extraction and clean-up steps, carried out by solid-phase extraction, were finely tuned on the basis of the characteristics of the analytes and lupin samples, providing good selectivity with minimized matrix interference. The effectiveness of the method was proven by the satisfactory recovery values obtained for most of the analytes and a matrix effect ≤23% for all tested levels. In addition, a sensitive and reliable determination of the target compounds was obtained; LOQs were between 1 and 25 µg Kg-1, i.e., below the requested maximum levels (<200 mg Kg-1). The method was applied to evaluate the LAs profile in different batches of raw L. albus L. samples, varying in size and across farming treatments.
Collapse
|
4
|
Kronik OM, Liang X, Nielsen NJ, Christensen JH, Tomasi G. Obtaining clean and informative mass spectra from complex chromatographic and high-resolution all-ions-fragmentation data by nonnegative parallel factor analysis 2. J Chromatogr A 2022; 1682:463501. [PMID: 36155072 DOI: 10.1016/j.chroma.2022.463501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
A major challenge in processing of complex data obtained from chromatography hyphenated to mass spectrometry is to resolve chromatographically co-eluting compounds. In this study, we present a workflow for the resolution of ultra-high pressure liquid chromatography high-resolution mass spectrometry data obtained by the broadband data-independent acquisition MSE operation (UHPLCHRMSE). The workflow is based on a recently introduced algorithm for Parallel Factor Analysis 2 (PARAFAC2) that allows to enforce non-negativity on all the model coefficients. The workflow was tested on three sets of UHPLC-HRMSE measurements from a Lupinus angustifolius L. crop field study, which included plant tissue samples, soil samples and samples from drainage water as well as stream water close to the field. The three datasets included 93, 59, and 75 chromatographic runs in total for the plant, soil and water batches, respectively. Nonnegative-PARAFAC2 models were fitted on the summed high and low energy (HE and LE) traces on chromatographic intervals corresponding to spiked standard for the three sample sets independently. In soil and plant samples, 13 out of 14 spiked standards were resolved by NN-PARAFAC2 even in presence of chromatographic co-elution, and their mass spectral loadings could be matched to a reference spectrum. In contrast, only seven spiked standards were correctly resolved and matched for the water samples because a higher chromatographic baseline rendered the data noisier. The results show that the workflow we present can provide improved mass spectral selectivity for data-independent acquisition compared to using the raw mass spectra and can be used to match fragment ions from the HE trace, and precursor and adduct ions from the LE trace even in presence of co-eluting compounds.
Collapse
Affiliation(s)
- Oskar Munk Kronik
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark.
| | - Xiaomeng Liang
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Nikoline Juul Nielsen
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Giorgio Tomasi
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| |
Collapse
|