1
|
Sun Y, Sun W, Wang J, Song C, Hu Y, Zhao R, Zhao W, He L. Glutathione-functionalized covalent organic frameworks@silica as a hydrophilic-hydrophobic balanced mixed-mode stationary phase for highly efficient separation of compounds with a wide range of polarity. Anal Chim Acta 2025; 1335:343477. [PMID: 39643289 DOI: 10.1016/j.aca.2024.343477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Covalent organic frameworks (COFs) are a highly promising stationary phase for high-performance liquid chromatography (HPLC), but the separation of polar compounds is limited by their low hydrophilicity. Therefore, it is crucial to develop novel COFs-based stationary phases with balanced hydrophilicity-hydrophobicity for the efficient separation of different polar compounds. RESULTS In this paper, glutathione (GSH)-functionalized COFs@silica microspheres (GSH-COFs@SiO2) were synthesized via a two-step, post-synthesis modification strategy. The COFs particles was constructed onto silica surface by the covalent conjugation of 1,3,5-tris(4-aminophenyl)benzene and 2,5-divinylterephthalaldehyde. GSH containing abundant -NH2 and -COOH groups was bonded onto the surface of COFs@SiO2 to further enhance hydrophilicity. The resulting GSH-COFs@SiO2 exhibited balanced hydrophilicity-hydrophobicity and can be used in hydrophilic/reversed-phase liquid chromatography modes through multiple retention mechanisms. Consequently, a variety of compounds with different polarity, including nucleosides/bases, benzoic acids, anilines, phenols, alkylbenzenes and polycyclic aromatic hydrocarbons, were well separated with ideal resolution, satisfactory column efficiency and good peak shapes. Furthermore, this novel column exhibited remarkable column stability, as evidenced by intra-day relative standard deviations of 0.08 %-0.18 % for retention time and 0.45 %-1.47 % for peak area. SIGNIFICANCE AND NOVELTY This work demonstrates the superior hydrophilic-hydrophobic selectivity of GSH-COFs@SiO2 stationary phases towards compounds with a wide range of polarity and provides a very facile and easily popularized post-synthetic modification route for hydrophilic-hydrophobic balanced COFs-based HPLC stationary phases.
Collapse
Affiliation(s)
- Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Wenjie Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Junqi Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Chenchen Song
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; School of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Yongxing Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Renyong Zhao
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China.
| |
Collapse
|
2
|
Liu J, Zhang Y, Yan Y, Li H, Zhang Q, Wang G, Sun YA. Construction of poly (styrene-divinylbenzene)@tris(4-aminophenyl)amine-p-phthalaldehyde-triethylenetetramine core-shell microspheres for the preparation of ion chromatography stationary phase. J Chromatogr A 2025; 1739:465549. [PMID: 39608235 DOI: 10.1016/j.chroma.2024.465549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Core-shell composite microspheres are increasingly favored for the development of stationary phases due to their ability to integrate the monodispersity of inner core with the functional versatility of outer shell. In this study, poly(styrene-divinylbenzene)@(tris(4-aminophenyl)amine-p-phthalaldehyde-triethylenetetramine) (PS-DVB@TAPA-PPA-TETA) core-shell composite microspheres were constructed via an amine-aldehyde condensation reaction. The resultant microspheres were subsequently quaternized using the residual amine groups of TETA in the shell to create an effective anion-exchange stationary phase. The composite microspheres were characterized by SEM, FTIR, N2 adsorption-desorption experiment, et al. According to the results, the surface of PS-DVB microspheres was wholly covered by TAPA-PPA-TETA. The obtained PS-DVB@TAPA-PPA-TETA exhibited good reactivity, mechanical and chemical stability. The customized column exhibited good separation performance for seven conventional anions, five organic acids and three carbohydrates. The results demonstrate that PS-DVB@TAPA-PPA-TETA is a highly suitable material for the preparation of ion chromatographic stationary phase, exhibiting exceptional chemical stability and robust chromatographic performance in practical application. Finally, the customized column was successfully utilized for the determination of phosphate in waste acid sample.
Collapse
Affiliation(s)
- Junwei Liu
- Department of Applied Chemistry, Zhengzhou University of Light Industry, Zhengzhou 450000, China.
| | - Yidan Zhang
- Department of Applied Chemistry, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Yuqi Yan
- Department of Applied Chemistry, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Haojie Li
- Department of Applied Chemistry, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Qichao Zhang
- Department of Applied Chemistry, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Guoqing Wang
- Department of Applied Chemistry, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Yu-An Sun
- Department of Applied Chemistry, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| |
Collapse
|
3
|
Zong S, Han A, Wang X, Liu K, Hu Y, Zhang W, He L, Zhao W. Development of amphiphilic hypercrosslinked porous polymers for magnetic extraction of multiple environmental pollutants in water. J Chromatogr A 2024; 1736:465381. [PMID: 39321754 DOI: 10.1016/j.chroma.2024.465381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Under the principle of similar compatibility, researchers have developed various polarity extractants corresponding to a class of chemicals. Separating different polarities chemicals with one extractant effectively has become a novel research trend in separation science. Given the complexity of environmental sample matrices and the significant differences in polarity and solubility of various compounds, the introduction of hydrophilic groups to hydrophobic material skeletons can lead to sorbents with hydrophilic-lipophilic balance (HLB) property and thus improve their extraction performance for substances with different polarities. In this work, a hypercrosslinked polymer (HCPPz-TPB), designated as HLB, was synthesized by incorporating polar pyrazine and nonpolar triphenylbenzene molecules within each other. Subsequently, a core-shell magnetic composite material was obtained by encapsulating magnetic Fe3O4 nanoparticles in HCPPz-TPB. The material was applied as an adsorbent for magnetic solid phase extraction (MSPE) and combined with a high-performance liquid chromatography-photodiode array detector (HPLC-PDA) to enrich, separate, and detect seven polar contaminants in environmental water samples. The proposed approach, Fe3O4@SiO2@HCPPz-TPB-MSPE-HPLC-PDA, is characterized by its outstanding high sensitivity, low detection limits, wide linear range, and good reproducibility. The method demonstrated satisfactory linearity in the range of 0.05-2 μg mL-1 with R2 values between 0.9969 and 0.9997; the limits of detection (LOD) were observed to be within the range of 0.0019-0.016 μg L-1, and limits of quantification (LOQ) was observed to be within the range of 0.0064-0.054 μg L-1 range with good precision. The recoveries of the different contaminants in the environmental samples ranged from 83.61 to 116.46% (RSD≤10.56, n = 5). The new hydrophilic-lipophilic balance extractant is highly efficient, sensitive, and precise for extracting different polar pollutants. The findings demonstrate that the Fe3O4@SiO2@HCPPz-TPB display a remarkable affinity for multiple targets, driven by complex interactions including multi-stackings and hydrogen bonding as a sorbent. The synthesized Fe3O4@SiO2@HCPPz-TPB may be employed in diverse applications, including extraction, removal, and determination of diverse trace multi-target analytes in complex media.
Collapse
Affiliation(s)
- Shuai Zong
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aikun Han
- Henan Province Fifth Geological Brigade Co., Ltd, Zhengzhou 450000, PR China
| | - Xiaoyu Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China.
| | - Kejian Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Yongxing Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenfen Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
4
|
Zhong Y, Li H, Lin Z, Li G. Advances in covalent organic frameworks for sample preparation. J Chromatogr A 2024; 1736:465398. [PMID: 39342731 DOI: 10.1016/j.chroma.2024.465398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Sample preparation is crucial in analytical chemistry, impacting result accuracy, sensitivity, and reliability. Solid-phase separation media, especially adsorbents, are vital for preparing of liquid and gas samples, commonly analyzed by most analytical instruments. With the advancements in materials science, covalent organic frameworks (COFs) constructed through strong covalent bonds, have been increasingly employed in sample preparation in recent years. COFs have outstanding selectivity and/or excellent adsorption capacity for a single target or can selectively adsorb multiple targets from complex matrix, due to their large specific surface area, adjustable pore size, easy modification, and stable chemical properties. In this review, we summarize the classification of COFs, such as pristine COFs, COF composite particles, and COFs-based substrates. We aim to provide a comprehensive understanding of the different classifications of COFs in sample preparation within the last three years. The challenges and development trends of COFs in sample preparation are also presented.
Collapse
Affiliation(s)
- Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Guo Y, Di W, Qin C, Liu R, Cao H, Gao X. Covalent Organic Framework-Involved Sensors for Efficient Enrichment and Monitoring of Food Hazards: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23053-23081. [PMID: 39382449 DOI: 10.1021/acs.jafc.4c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The food safety issues caused by environmental pollution have posed great risks to human health that cannot be ignored. Hence, the precise monitoring of hazard factors in food has emerged as a critical concern for the food safety sector. As a novel porous material, covalent organic frameworks (COFs) have garnered significant attention due to their large specific surface area, excellent thermal and chemical stability, modifiability, and abundant recognition sites. This makes it a potential solution for food safety issues. In this research, the synthesis and regulation strategies of COFs were reviewed. The roles of COFs in enriching and detecting food hazards were discussed comprehensively and extensively. Taking representative hazard factors in food as the research object, the expression forms and participation approaches of COFs were explored, along with the effectiveness of corresponding detection methods. Finally, the development directions of COFs in the future as well as the problems existing in practical applications were discussed, which was beneficial to promote the application of COFs in food safety and beyond.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Rui Liu
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| |
Collapse
|
6
|
Xia Y, Wang L, Liu Y, Liu J, Bai Q. One-pot fabrication and evaluation of β-ketoenamine covalent organic frameworks@silica composite microspheres as reversed-phase/hydrophilic interaction mixed-mode stationary phase for high performance liquid chromatography. J Chromatogr A 2024; 1728:464998. [PMID: 38795423 DOI: 10.1016/j.chroma.2024.464998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Covalent organic frameworks (COFs) show promise as a stationary phase in high performance liquid chromatography (HPLC). However, there are only a few COFs-based stationary phases developed for HPLC separation so far. Therefore, it is crucial to not only develop more varieties of COFs-type stationary phases for HPLC separation, but also to explore the retention mechanism of solutes on these stationary phases. In this paper, a new in-situ growth method was developed to prepare β-ketoenamine COF-TpPa-1@SiO2 composite microspheres, using spherical silica as the core material and COF-TpPa-1 fabricated by covalent conjugation of 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa-1) as the COF shells. The resulting microspheres exhibit uniform morphology, good monodispersity, large specific surface area, narrow size distribution, and high stability. Due to diverse functional groups in the structure of COF-TpPa-1, the microspheres can offer multiple interactions, such as hydrophobic, π-π stacking and electron-donor-acceptor (EDA) between COFs and analytes. As a result, the COF-TpPa-1@SiO2 composite microspheres can be used as a mixed-mode stationary phase for HPLC separation. The chromatographic performance and retention mechanism of the COF-TpPa-1@SiO2 packed column were investigated by separating polar and non-polar solutes, as well as isomers, in various HPLC modes, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction chromatography (HILIC), and RPLC/HILIC mixed-mode chromatography. The results showed successful separation of non-polar alkylbenzene homologues, polycyclic aromatic hydrocarbons (PAHs), and polar amines and phenols in RPLC mode. The "U-shaped" curves of retention factor with the ACN concentration in mobile phase for four nucleobases indicated that the solute retention on the column followed a mixed mode mechanism of RPLC/HILIC. Compared to a traditional C18 column, the COF-TpPa-1@SiO2 column exhibited superior separation efficiency, stability, repeatability and reproducibility in the separation of analytes with different polarities. The column enhanced the aromatic, shape and planar selectivity for PAHs and isomers through π-π interaction and improved the separation efficiency for electron-deficient compounds due to EDA effect. At last, the column was successfully used to separate and detect the residues of 5 phenylurea herbicides (PUHs) in soil. All these results indicate the potential of COFs for chromatography applications.
Collapse
Affiliation(s)
- Yiran Xia
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institue of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an 710127, China
| | - Lushuai Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institue of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an 710127, China
| | - Yang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institue of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an 710127, China
| | - Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institue of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an 710127, China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institue of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
7
|
Zhang J, Fu X, Qiu J, Wang C, Wang L, Feng J, Dong L, Long C, Wang X, Li D. Construction of High-Performance Anode of Potassium-Ion Batteries by Stripping Covalent Triazine Frameworks with Molten Salt. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401804. [PMID: 38924654 PMCID: PMC11348138 DOI: 10.1002/advs.202401804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Covalent triazine frameworks (CTFs) are promising battery electrodes owing to their designable functional groups, tunable pore sizes, and exceptional stability. However, their practical use is limited because of the difficulty in establishing stable ion adsorption/desorption sites. In this study, a melt-salt-stripping process utilizing molten trichloro iron (FeCl3) is used to delaminate the layer-stacked structure of fluorinated covalent triazine framework (FCTF) and generate iron-based ion storage active sites. This process increases the interlayer spacing and uniformly deposits iron-containing materials, enhancing electron and ion transport. The resultant melt-FeCl3-stripped FCTF (Fe@FCTF) shows excellent performance as a potassium ion battery with a high capacity of 447 mAh g-1 at 0.1 A g-1 and 257 mAh g-1 at 1.6 A g-1 and good cycling stability. Notably, molten-salt stripping is also effective in improving the CTF's Na+ and Li+ storage properties. A stepwise reaction mechanism of K/Na/Li chelation with C═N functional groups is proposed and verified by in situ X-ray diffraction testing (XRD), ex-situ X-ray photoelectron spectroscopy (XPS), and theoretical calculations, illustrating that pyrazines and iron coordination groups play the main roles in reacting with K+/Na+/Li+ cations. These results conclude that the Fe@FCTF is a suitable anode material for potassium-ion batteries (PIBs), sodium-ion batteries (SIBs), and lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Jingyi Zhang
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Xuwang Fu
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Jiacheng Qiu
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Chao Wang
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Li Wang
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Jianmin Feng
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Lei Dong
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Conglai Long
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Xiaowei Wang
- National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous MetalsSchool of Metallurgy and EnvironmentCentral South UniversityChangsha410083P. R. China
| | - Dejun Li
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| |
Collapse
|
8
|
Zhou HM, Liu C, Zhang Y, Ma AX, Luo ZH, Zhu YL, Ran XY, Xie SM, Wang BJ, Zhang JH, Yuan LM. Asymmetric catalytic synthesis of chiral covalent organic framework composite (S)-DTP-COF@SiO 2 for HPLC enantioseparations by normal-phase and reversed-phase chromatographic modes. Mikrochim Acta 2024; 191:445. [PMID: 38958767 DOI: 10.1007/s00604-024-06524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
A novel CCOF core-shell composite material (S)-DTP-COF@SiO2 was prepared via asymmetric catalytic and in situ growth strategy. The prepared (S)-DTP-COF@SiO2 was utilized as separation medium for HPLC enantioseparation using normal-phase and reversed-phase chromatographic modes, which displays excellent chiral separation performance for alcohols, esters, ketones, and epoxides, etc. Compared with chiral commercial chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some previously reported chiral CCOF@SiO2 (CC-MP CCTF@SiO2 and MDI-β-CD-modified COF@SiO2)-packed columns, there are 4, 3, 13, and 15 tested racemic compounds that could not be resolved on the Chiralpak AD-H column, Chiralcel OD-H column, CC-MP CCTF@SiO2 column, and MDI-β-CD-modified COF@SiO2 column, respectively, which indicates that the resolution effect of (S)-DTP-COF@SiO2-packed column can be complementary to the other ones. The effects of the analyte mass, column temperature, and mobile phase composition on the enantiomeric separation were investigated. The chiral column exhibits good reproducibility after multiple consecutive injections. The RSDs (n = 5) of the peak area and retention time were less than 1.5% for repetitive separation of 2-methoxy-2-phenylethanol and 1-phenyl-1-pentanol. The chiral core-shell composite (S)-DTP-COF@SiO2 exhibited good enantiomeric separation performance, which not only demonstrates its potential as a novel CSP material in HPLC but also expands the range of applications for chiral COFs.
Collapse
Affiliation(s)
- Hong-Mei Zhou
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Cheng Liu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Yue Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - An-Xu Ma
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Zong-Hong Luo
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Yu-Lan Zhu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Xiao-Yan Ran
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| |
Collapse
|
9
|
Wang Z, Wang W, Luo AQ, Yuan LM. Recent progress for chiral stationary phases based on chiral porous materials in high-performance liquid chromatography and gas chromatography separation. J Sep Sci 2024; 47:e2400073. [PMID: 38965996 DOI: 10.1002/jssc.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
Chirality is a fundamental property of nature. Separation and analysis of racemates are of great importance in the fields of medicine and the production of chiral biopharmaceutical intermediates. Chiral chromatography has the characteristics of a wide separation range, fast separation speed, and high efficiency. The development and preparation of novel chiral stationary phases with good chiral recognition and separation capacity is the core and key of chiral chromatographic separation and analysis. In this work, the representative research progress of novel chiral porous crystal materials including chiral covalent organic frameworks, chiral porous organic cages, chiral metal-organic frameworks, and chiral metal-organic cages used as chiral stationary phases of capillary gas chromatography and high-performance liquid chromatography over the last 4 years is reviewed in detail. The chiral recognition and separation properties of the representative studies in this review are also introduced and discussed.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wei Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ai-Qin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|
10
|
Gavara R, Royuela S, Zamora F. A minireview on covalent organic frameworks as stationary phases in chromatography. Front Chem 2024; 12:1384025. [PMID: 38606080 PMCID: PMC11006975 DOI: 10.3389/fchem.2024.1384025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Advances in the design of novel porous materials open new avenues for the development of chromatographic solid stationary phases. Covalent organic frameworks (COFs) are promising candidates in this context due to their remarkable structural versatility and exceptional chemical and textural properties. In this minireview, we summarize the main strategies followed in recent years to apply these materials as stationary phases for chromatographic separations. We also comment on the perspectives of this new research field and potential directions to expand the applicability and implementation of COF stationary phases in analytical systems.
Collapse
Affiliation(s)
- Raquel Gavara
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Royuela
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Félix Zamora
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Wei W, Zhao L, Liu Y, Zhang Y, Chen W, Tang S. Facile synthesis of a novel polymer/covalent organic framework@silica composite material in deep eutectic solvent for mixed-mode liquid chromatographic separation. Mikrochim Acta 2023; 191:35. [PMID: 38108891 DOI: 10.1007/s00604-023-06116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
The solvothermal synthesis of covalent organic framework (COF) modified silica gel usually requires the use of harmful organic solvents, tedious steps, and harsh reaction conditions. In pursuit of green chemistry, a new strategy for the facile preparation of COF@SiO2 composite material was realized in this work by using a low-toxicity and low-cost deep eutectic solvent as the reaction medium. Additionally, a flexible polyacrylic acid (PAA) was introduced for the purpose of improving the hydrophilic selectivity and separation efficiency of COF@SiO2. Based on the above ideas, a novel PAA/COF@SiO2 composite was successfully developed as a liquid chromatographic packing material. Performance evaluation of the slurry-packed PAA/COF@SiO2 column showed that diverse types of analytes were effectively separated, and the retention behavior of polar nucleosides showed a U-shaped trend, indicating mixed-mode of hydrophobic/hydrophilic retention mechanisms. Thermodynamic studies revealed that the separation mechanism was largely independent of temperature. This work verifies the feasibility of synthesizing polymer/COF@SiO2 composite material in the deep eutectic solvent. This strategy provides a theoretical reference for the green and facile preparation of COF@SiO2 as an efficient liquid chromatographic stationary phase.
Collapse
Affiliation(s)
- Wanjiao Wei
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanjuan Liu
- School of Pharmacy, Linyi University, Shuangling Road, Linyi, 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
12
|
Liu Y, Shang S, Wei W, Zhang Y, Chen W, Tang S. Ionic liquid/covalent organic framework/silica composite material: Green synthesis and chromatographic evaluation. Anal Chim Acta 2023; 1283:341992. [PMID: 37977797 DOI: 10.1016/j.aca.2023.341992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Due to their large surface area and distinctive adsorption affinity, covalent organic frameworks (COFs) appear to be good candidates as liquid chromatographic separation materials with good application prospect. The development of COF materials in chromatographic science is currently in an exploratory stage. Especially, the practicability of COF@silica composite materials as liquid chromatographic stationary phases needs further exploration. Reasonably integrating a functional component such as ionic liquid (IL) into the COF@silica composite materials may provide customized functionality to achieve the purpose of synthesizing multi-functional COF based stationary phases. RESULTS In this study, an IL modified COF bonded silica composite material (IL-COF@SiO2) was successfully synthesized by using an environmentally friendly deep eutectic solvent as the reaction medium instead of the frequently-used organic solvent. The synthesized IL-COF@SiO2 composite material combines the excellent separation ability of COF and the excellent mass transfer function of spherical porous silica microsphere, and meanwhile, the introduction of IL endows COF@SiO2 with preferable separation performance. The slurry-packed IL-COF@SiO2 liquid chromatographic column could be applied to effectively separate hydrophobic and hydrophilic compounds with preferable separation selectivity and high column efficiency. By investigating the retention behavior and influencing factors, a mixed-mode retention mechanism was found. Multiple interaction forces endow the IL-COF@SiO2 with a hydrophilic-hydrophobic balance performance, demonstrating a good application prospect as a versatile liquid chromatographic separation material. SIGNIFICANCE In this study, a new strategy is proposed for greenly synthesizing a novel IL-COF@SiO2 composite material under mild conditions, which expands the potential application of COF materials in chromatographic science. One particular point to note is that the reaction medium in each step of the preparation process is low toxic and degradable deep eutectic solvent, which conforms to the concept of green chemistry.
Collapse
Affiliation(s)
- Yuanfei Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sunqi Shang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wanjiao Wei
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
13
|
Wei W, Long H, Liu Y, Zhang Y, Chen W, Tang S. Preparation and application of a novel imine-linked covalent organic framework@silica composite for reversed-phase and hydrophilic interaction chromatographic separations. Anal Chim Acta 2023; 1276:341635. [PMID: 37573114 DOI: 10.1016/j.aca.2023.341635] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/16/2023] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
The composites of covalent organic frameworks (COFs) and silica gel have been considered to be promising chromatographic separation materials due to the distinct advantages such as large specific surface area, good mechanical strength and high porosity. In the present study, a novel imine-linked COF@silica composite was prepared by in-situ growth of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2,5-dihydroxyterephthalaldehyde (DHTA) monomers on the surface of aminated silica gel (SiO2-NH2). The successful surface-modification of TAPT-DHTA-COF distinctly enhanced the separation selectivity and efficiency of SiO2-NH2. Multiple types of analyte-stationary phase interactions contributed to the selective retention of structurally similar analytes. The designed TAPT-DHTA-COF@SiO2 was observed to effectively separate hydrophobic phenyl ketones, phthalate esters and steroid hormones. Moreover, the polar amino and hydroxyl groups of TAPT-DHTA-COF facilitated the selective determination of hydrophilic nucleosides/bases. The kinetic performance and thermodynamic behavior of TAPT-DHTA-COF@SiO2 column were particularly explored. It was found that column efficiency was mainly affected by the mass transfer resistance, and the retention of nucleosides/bases on the TAPT-DHTA-COF@SiO2 column was temperature dependent. The developed versatile TAPT-DHTA-COF@SiO2 column was finally applied for detecting environmental hormones as well as water-soluble nicotinamide in real samples. In summary, the potential application of TAPT-DHTA-COF@SiO2 composite material for liquid chromatographic separations was first explored and verified. The TAPT-DHTA-COF@SiO2 was proved to be a promising chromatographic separation material.
Collapse
Affiliation(s)
- Wanjiao Wei
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Haoyu Long
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanjuan Liu
- School of Pharmacy, Linyi University, Shuangling Road, Linyi, 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
14
|
Long H, Jiang Y, Liu Y, Zhang Y, Chen W, Tang S. Chromatographic separation performance of silica microspheres surface-modified with triazine-containing imine-linked covalent organic frameworks. Talanta 2023; 260:124589. [PMID: 37126925 DOI: 10.1016/j.talanta.2023.124589] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
In this work, 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 1,3,5-tris(4-formylphenyl)benzene (TFPB) were used as monomers to construct a triazine-containing imine-linked covalent organic framework (COF), which was then bonded onto the surface of aldehydized silica (SiO2-CHO), and finally a COF@silica composite material (TAPT-TFPB COF@SiO2) was successfully prepared. The chromatographic separation performance of SiO2-CHO, TAPT-TFPB COF@SiO2 and TAPT-TFPB COF@SiO2/SiO2-CHO (80/20, mass ratio) was evaluated and compared. It was found that separation efficiency was obviously enhanced by adding an appropriate amount of SiO2-CHO into TAPT-TFPB COF@SiO2. The obtained TAPT-TFPB COF@SiO2/SiO2-CHO showed more favorable separation ability than SiO2-CHO and TAPT-TFPB COF@SiO2. Various aromatic compounds including alkylbenzenes, polycyclic aromatic hydrocarbons, environmental endocrine disruptors, foodborne stimulants and phenyl ketones were effectively separated on the TAPT-TFPB COF@SiO2/SiO2-CHO column in reversed phase chromatography mode. The silica microspheres surface-modified with triazine-containing imine-linked COFs proved to be a new type of promising chromatographic packing materials.
Collapse
Affiliation(s)
- Haoyu Long
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanhao Jiang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanjuan Liu
- School of Pharmacy, Linyi University, Shuangling Road, Linyi, 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
15
|
Xie M, Quan K, Li H, Liu B, Chen J, Yu Y, Wang J, Qiu H. Non-porous silica support covalent organic frameworks as stationary phases for liquid chromatography. Chem Commun (Camb) 2023; 59:314-317. [PMID: 36508301 DOI: 10.1039/d2cc05650j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new strategy using non-porous silica (NPS) spheres as the support and covalent organic frameworks (COFs) as the porous functional shell for liquid chromatography was developed to ensure the independent effect of the COFs on the separation. As a proof of concept, NPS@TPB-DMTP was prepared for liquid chromatographic analysis using 1,3,5-tris(4-aminophenyl)benzene (TPB) and 2,5-dimethoxy-1,4-benzenedicarboxaldehyde (DMTP) as monomers by in situ polymerisation on the surface of NPS. It is a new way of developing COF-based stationary phases, which will be helpful in understanding what effect the COFs will have on separation.
Collapse
Affiliation(s)
- Meichao Xie
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China. .,CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Hui Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Bei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yongliang Yu
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. .,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Zhao C, Yan S, Liu J, Xiong Z, Zhao L. Octadecylamine and serine-derived carbon dots-modified silica gel for reversed phase/hydrophilic interaction liquid chromatography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Ingenious introduction of aminopropylimidazole to tune the hydrophobic selectivity of dodecyl-bonded stationary phase for environmental organic pollutants. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Jiao P, Wang Z, Zhang C, Ali M, Gu L, Gao S, Liu J. Adsorption separation of guanosine 5'-Monophosphate and cytidine 5'-Monophosphate by mixed-mode Resin HD-1: Experimental study and mathematical modeling. J Chromatogr A 2022; 1678:463359. [PMID: 35914411 DOI: 10.1016/j.chroma.2022.463359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/23/2023]
Abstract
The preparative separation of guanosine 5'-monophosphate (GMP) and cytidine 5'-monophosphate (CMP) on mixed-mode resin HD-1 was experimentally and theoretically investigated. The adsorption mechanisms of the two nucleotides were elucidated by analyzing adsorption equilibria and kinetics at different pH values. The adsorption dynamics of GMP and CMP in a fixed bed packed with resin HD-1 were studied. All nucleotide monovalent cations, zwitterions, and monovalent anions were adsorbed by the resin. Further, a general adsorption isotherm model was developed by considering the adsorption of different nucleotide species and the dissociation equilibrium behaviors of resin ligands. The model fit the adsorption isotherm data of GMP and CMP well. A modified liquid-film linear driving force model with the combined physical adsorption of nucleotides in different dissociation states and ion exchange of Na+ was established. The dissociation equilibria of resin ligands and nucleotides were considered. The model satisfactorily predicted the adsorption kinetic data at different pH values. The values of the efficient diffusion coefficients for GMP and CMP were not significantly influenced by the solution pH. A modified transport-diffusion model with pH gradient elution was proposed. The model accurately predicted the elution chromatographic peaks of GMP and CMP, as well as the pH at the outlet of the fixed bed packed with resin HD-1.
Collapse
Affiliation(s)
- Pengfei Jiao
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Zhaoqi Wang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Caiying Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Maripat Ali
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Luying Gu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Shanshan Gao
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jiamiao Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| |
Collapse
|
19
|
Zhong Z, Chu Z, Dong Z, Zhang W, Zhang L. The separation characteristics and performance evaluation of the silica-based poly(pentabromostyrene) stationary phase in capillary electrochromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5764-5771. [PMID: 34816827 DOI: 10.1039/d1ay01594j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A mixed-mode capillary column packed with silica-based poly(pentabromostyrene) particles (denoted as SiO2@pPBS) was prepared and applied to capillary electrochromatography (CEC) separation. With the presence of benzene rings and bromine atoms in polymer chains, the SiO2@pPBS column provides a reversed-phase/hydrophilic mixed-mode retention mechanism owing to hydrophilic, hydrophobic and π-π interactions between the stationary phase and various analytes, including alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides, phenols and anilines. In CEC mode, the separation behavior of charged solutes is not only related to the interaction with the stationary phase, but also influenced by electrophoretic effects, which may lead to different selectivities compared to high performance liquid chromatography (HPLC). A column efficiency of up to 1.22 × 105 N m-1 was achieved for p-chloroaniline. Besides, the RSDs of retention time of anilines for run to run (n = 5), day to day (n = 5) and column to column (n = 3) were all less than 4.4%. Finally, the SiO2@pPBS capillary column was applied to the separation of coking wastewater with satisfactory results. All the results demonstrated that the SiO2@pPBS capillary packed column with RP/HILIC mixed-mode has great application potential.
Collapse
Affiliation(s)
- Zhihua Zhong
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Ziyi Dong
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
20
|
Zheng Y, Wan M, Zhou J, Dai X, Yang H, Xia Z, Wang L. One-pot method for the synthesis of β-cyclodextrin and covalent organic framework functionalized chiral stationary phase with mixed-mode retention mechanism. J Chromatogr A 2021; 1662:462731. [PMID: 34915189 DOI: 10.1016/j.chroma.2021.462731] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
As a welcomed porous material, covalent organic frameworks (COFs) have many advantages and are widely used in various aspects. Particularly, COFs have aroused great attentions of scientists in chromatographic separation field due to their outstanding advantages, such as high stability, large specific surface area and multiple voids. However, endowing COFs with chirality to construct chiral stationary phase (CSP) function is still facing many challenges. Here, we firstly prepared a β-cyclodextrin (β-CD) and covalent organic framework functional silica CSP named as COF@CD@SiO2 by one-pot method to perform high performance liquid chromatography (HPLC) chiral separation. The morphology and structure of the synthesized stationary phase were investigated by a variety of characterization methods including Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), N2 adsorption experiment, powder X-ray diffraction (XRD) and elemental analysis (EA). The prepared stationary phase realized fast separation of six enantiomers in a short time. The separation mechanism was mainly ascribed to the inclusion complexation of β-cyclodextrin and the mutli-interaction sites from COFs material. In conclusion, the prepared chiral column can be used to achieve fast separation of enantiomers with good stability and reproducibility. These results can open new avenue for using chiral COFs in liquid chromatographic separation.
Collapse
Affiliation(s)
- Yunchao Zheng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meijun Wan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingqiu Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xuemei Dai
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Honglin Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School of Pharmacy, Chongqing University, Chongqing 401331, China.
| | - Lujun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
21
|
Zhang JH, Xie SM, Yuan LM. Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J Sep Sci 2021; 45:51-77. [PMID: 34729907 DOI: 10.1002/jssc.202100593] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Separations and analyses of chiral compounds are important in many fields, including pharmaceutical production, preparation of chemical intermediates, and biochemistry. High-performance liquid chromatography using a chiral stationary phase is regarded as one of the most valuable methods for enantiomeric separation and analysis because it is highly efficient, is broadly applicable, and has powerful separation capability. The focus for development of this method is the identification of novel chiral stationary phases with superior recognition performance and good stability. The present article reviews recent progress in the development of new chiral stationary phases for high-performance liquid chromatography between January 2018 and June 2021. These newly reported chiral stationary phases are divided into three categories: small organic molecule-based (cyclodextrin and its derivatives, macrocyclic antibiotics, cinchona alkaloids, and other low molecular weight chiral molecules), macromolecule-based (cellulose and amylose derivatives, chitin and chitosan derivatives, and synthetic helical polymers) and chiral porous material-based (chiral metal-organic frameworks, chiral covalent organic frameworks, and chiral inorganic mesoporous silicas). Each type of chiral stationary phase is discussed in detail.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|
22
|
Capillary coated with three-dimensional covalent organic frameworks for separation of fluoroquinolones by open-tubular capillary electrochromatography. J Chromatogr A 2021; 1656:462549. [PMID: 34543884 DOI: 10.1016/j.chroma.2021.462549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 01/01/2023]
Abstract
The Schiff-base reaction of 1,3,5-triformylphloroglucinol (Tp) and tetra(4-aminophenyl)methane (TAM) was performed for the synthesis of a three-dimensional covalent organic framework named 3D TpTAM, which was obtained by an ultrasound-assisted method for the first time. The morphology and structure of the synthesized TpTAM were characterized through various methods. Then, TpTAM-coated capillary columns were subsequently prepared by a covalent bonding method within a short time and applied for the separation of fluoroquinolones by capillary electrochromatography (CEC) with good resolution and reproducibility. The intraday relative standard deviations (RSDs) of the retention time and peak areas were 0.88%-0.95% and 2.27%-3.81%, respectively. The interday RSDs of retention time and peak areas were 0.71%-0.89% and 0.88%-3.60%, respectively. The column-to-column RSDs of retention time and peak areas were less than 1.90% and 13.56%, respectively. The interbatch RSDs of retention time and peak areas were less than 3.48% and 3.89%, respectively. The TpTAM-coated capillary columns could be used for no less than 100 runs with no observable changes in the separation efficiency. The separation mechanism was also studied, which indicated that π-π stacking effects, hydrophobic interactions and hydrogen bonding were the main factors. The results revealed that 3D TpTAM should have superior potential as the stationary phase in CEC for chromatographic separation.
Collapse
|