1
|
Lynen F, Ampe A, Bandini E, Baert M, Wicht K, Kajtazi A, Rahmani T, Veenhoven J, Spileers G. Perspectives in Hydrophobic Interaction Temperature- Responsive Liquid Chromatography (TRLC). LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.vd2373d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Temperature-responsive liquid chromatography (TRLC) is an emerging green high performance liquid chromatography (HPLC) mode allowing reversed phase-type separations while necessitating only water as the mobile phase. The columns therein are typically packed with silica particles to which stimuli-responsive polymers are anchored. In hydrophobic interaction TRLC, such polymers depict a loss of water solubility when increasing the temperature above a characteristic conversion temperature, causing large changes in retention over quite narrow and mild temperature ranges (~5–55 °C). TRLC circumvents the concerns about analyte or column degradation that can occur when implementing high temperatures (>80 °C) on conventional reversed- phase columns. It allows for high performance liquid chromatography (HPLC) using only water often spiked with the additives typically used in reversed-phase LC. Therefore, this separation mode allows for greener, cheaper, and isocratic analyses under non-denaturing conditions. The absence of compositional solvent gradients also allows for the exploitation of temperature gradients in combination with refractive index detection. Purely aqueous hydrophobic interaction TRLC is mostly applicable for solutes depicting a 1 < LogP < 5, yet these ranges can be expanded through implementation of combined aqueous or organic mobiles phases, while preserving the temperature-responsive effects. In this first TRLC installment, our recent developments, new possibilities, and current limitations of the use of 1-D TRLC are discussed, while the column performance is described with respect to the fundamentals of HPLC.
Collapse
|
2
|
Wicht K, Baert M, von Doehren N, Desmet G, de Villiers A, Lynen F. Speeding up temperature-responsive × reversed-phase comprehensive liquid chromatography through the combined exploitation of temperature and flow rate gradients. J Chromatogr A 2022; 1685:463584. [DOI: 10.1016/j.chroma.2022.463584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
|
3
|
Wicht K, Baert M, Schipperges S, von Doehren N, Desmet G, Van Geem KM, de Villiers A, Lynen F. Enhanced Sensitivity in Comprehensive Liquid Chromatography: Overcoming the Dilution Problem in LC × LC via Temperature-Responsive Liquid Chromatography. Anal Chem 2022; 94:16728-16737. [DOI: 10.1021/acs.analchem.2c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristina Wicht
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Mathijs Baert
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Sonja Schipperges
- Agilent Technologies, Hewlett Packard Street 8, D-76337 Waldbronn, Germany
| | - Norwin von Doehren
- Agilent Technologies, Netherlands BV, NL-4330 EA Middelburg, Netherlands
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Kevin M. Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - André de Villiers
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, ZA-7602 Matieland, South Africa
| | - Frédéric Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Musarurwa H, Tavengwa NT. Stimuli-responsive polymers and their applications in separation science. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Broeckhoven K. Advances in the limits of separation power in supercritical fluid chromatography. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|