1
|
Sun Y, Sun W, Wang J, Song C, Hu Y, Zhao R, Zhao W, He L. Glutathione-functionalized covalent organic frameworks@silica as a hydrophilic-hydrophobic balanced mixed-mode stationary phase for highly efficient separation of compounds with a wide range of polarity. Anal Chim Acta 2025; 1335:343477. [PMID: 39643289 DOI: 10.1016/j.aca.2024.343477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Covalent organic frameworks (COFs) are a highly promising stationary phase for high-performance liquid chromatography (HPLC), but the separation of polar compounds is limited by their low hydrophilicity. Therefore, it is crucial to develop novel COFs-based stationary phases with balanced hydrophilicity-hydrophobicity for the efficient separation of different polar compounds. RESULTS In this paper, glutathione (GSH)-functionalized COFs@silica microspheres (GSH-COFs@SiO2) were synthesized via a two-step, post-synthesis modification strategy. The COFs particles was constructed onto silica surface by the covalent conjugation of 1,3,5-tris(4-aminophenyl)benzene and 2,5-divinylterephthalaldehyde. GSH containing abundant -NH2 and -COOH groups was bonded onto the surface of COFs@SiO2 to further enhance hydrophilicity. The resulting GSH-COFs@SiO2 exhibited balanced hydrophilicity-hydrophobicity and can be used in hydrophilic/reversed-phase liquid chromatography modes through multiple retention mechanisms. Consequently, a variety of compounds with different polarity, including nucleosides/bases, benzoic acids, anilines, phenols, alkylbenzenes and polycyclic aromatic hydrocarbons, were well separated with ideal resolution, satisfactory column efficiency and good peak shapes. Furthermore, this novel column exhibited remarkable column stability, as evidenced by intra-day relative standard deviations of 0.08 %-0.18 % for retention time and 0.45 %-1.47 % for peak area. SIGNIFICANCE AND NOVELTY This work demonstrates the superior hydrophilic-hydrophobic selectivity of GSH-COFs@SiO2 stationary phases towards compounds with a wide range of polarity and provides a very facile and easily popularized post-synthetic modification route for hydrophilic-hydrophobic balanced COFs-based HPLC stationary phases.
Collapse
Affiliation(s)
- Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Wenjie Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Junqi Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Chenchen Song
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; School of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Yongxing Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Renyong Zhao
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China.
| |
Collapse
|
2
|
Cheng L, Huang M, Ren H, Wang Y, Cui H, Xu M. Advances in the development of N-glycopeptide enrichment materials based on hydrophilic interaction chromatography. Anal Bioanal Chem 2024:10.1007/s00216-024-05708-9. [PMID: 39710781 DOI: 10.1007/s00216-024-05708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Protein glycosylation is one of the most important post-translational modifications, implicated in the development of various diseases, including neurodegenerative diseases, diabetes, and cancers. However, the low content of glycoproteins in biological samples, the diversity and heterogeneity of glycan structures, and insensitive detection methods make glycosylation analysis challenging. As a result, efficient enrichment of glycopeptides from complex samples is a critical step. Efficient enrichment technology can increase the abundance of intact N-glycopeptides in complex biological samples, thereby improving the sensitivity and coverage of glycosylation analysis, which is of great significance for the accurate identification of biomarkers and the development of glycopeptide-based drugs. Among various separation methods for N-glycopeptides, hydrophilic interaction chromatography has received increasing attention, and a variety of enrichment materials have been developed. This article classifies and describes the relevant hydrophilic interaction chromatography materials and provides a comprehensive review of their applications in N-glycopeptide enrichment regarding selectivity, sensitivity, and enrichment performance. Future development trends of ideal glycopeptide enrichment materials are also discussed.
Collapse
Affiliation(s)
- Li Cheng
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
| | - Mingxian Huang
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
- BEAVER Laboratories, Suzhou, 215123, China
| | - Hui Ren
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
- BEAVER Laboratories, Suzhou, 215123, China
| | - Yiqiang Wang
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| | - Mingming Xu
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China.
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Heo H, Cho S, Kim Y, Ahn S, Mok JH, Lee H, Lee D. Effective enrichment of glycated proteome using ultrasmall gold nanoclusters functionalized with boronic acid. NANOSCALE 2024; 16:20147-20154. [PMID: 39392422 DOI: 10.1039/d4nr03283g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Glycated proteins play a crucial role in various biological pathways and the pathogenesis of human diseases. A comprehensive analysis of glycated proteins is essential for understanding their biological significance. However, their low abundance and heterogeneity in complex biological samples necessitate an enrichment procedure prior to their detection. Current enrichment strategies primarily rely on the boronic acid (BA) affinity method combined with functional nanoparticles; however, the effectiveness of these approaches is often suboptimal. In this study, a novel nanocluster (NC)-based enrichment material was synthesized for the first time, characterized as Au22SG18 functionalized with 24 BA groups, in which SG is glutathione. The functionalized BA established a reversible covalent bond with the cis-dihydroxy group through pH adjustment, enabling selective enrichment of glycated peptides. After the optimization of the enrichment protocol, we demonstrated highly sensitive and selective enrichment of standard glycopeptides using the NC-based enrichment material, exhibiting excellent reusability. Efficient enrichment was also demonstrated for the glycated proteome from human serum. These results highlight the potential of the atomically well-defined ultrasmall Au NCs as a powerful tool for high-throughput analysis of glycated peptides.
Collapse
Affiliation(s)
- Hongmae Heo
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Seonghyeon Cho
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
- Basil Biotech, 157-20 Sinsong-ro, Incheon 22002, Republic of Korea
| | - Yuhyeon Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Soomin Ahn
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jeong-Hun Mok
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
5
|
Meng L, Wang B, Zhang S, Zhang S, Cai T, Ding CF, Yan Y. One-step fabrication of dipeptide-based bifunctional polymer for individual enrichment of glycopeptides and phosphopeptides from serum. J Chromatogr A 2024; 1730:465173. [PMID: 39025024 DOI: 10.1016/j.chroma.2024.465173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
A dipeptide-based bifunctional material immobilized with Ti4+ (denoted as APE-MBA-VPA-Ti4+) was developed using precipitation polymerization. This polymer combines hydrophilic interaction liquid chromatography (HILIC) and immobilized metal affinity chromatography (IMAC) enrichment strategies, allowing for the individual and simultaneous enrichment of glycopeptides and phosphopeptides. It demonstrated high sensitivity (0.1 fmol μL-1 for glycopeptides, 0.005 fmol μL-1 for phosphopeptides), strong selectivity (molar ratio HRP: BSA = 1:1000, β-casein: BSA = 1:2500), consistent reusability (10 cycles) and satisfactory recovery rate (93.5 ± 1.8 % for glycopeptides, 91.6 ± 0.6 % for phosphopeptides) in the individual enrichment. Utilizing nano LC-MS/MS technology, the serum of liver cancer patients was analyzed after enrichment individually, resulting in the successful capture of 333 glycopeptides covering 262 glycosylation sites, corresponding to 131 glycoproteins, as well as 67 phosphopeptides covering 57 phosphorylation sites, related to 48 phosphoproteins. In comparison, the serum of normal healthy individuals yielded a total of 283 glycopeptides covering 244 glycosylation sites corresponding to 126 glycoproteins, as well as 66 phosphopeptides covering 56 phosphorylation sites related to 37 phosphoproteins. Label-free quantification identified 10 differentially expressed glycoproteins and 8 differentially expressed phosphoproteins in the serum of liver cancer patients. Among them, glycoproteins (HP, BCHE, AGT, C3, and PROC) and phosphoproteins (ZYX, GOLM1, GP1BB, CLU, and TNXB) showed upregulation and displayed potential as biomarkers for liver cancer.
Collapse
Affiliation(s)
- Luyan Meng
- Ningbo No.2 Hospital, Ningbo, Zhejiang, 315099, PR China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, 315020, PR China
| | - Bing Wang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Sijia Zhang
- Ningbo No.2 Hospital, Ningbo, Zhejiang, 315099, PR China
| | - Shun Zhang
- Ningbo No.2 Hospital, Ningbo, Zhejiang, 315099, PR China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, 315020, PR China
| | - Ting Cai
- Ningbo No.2 Hospital, Ningbo, Zhejiang, 315099, PR China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, 315020, PR China.
| | - Chuan-Fan Ding
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, 315020, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
| | - Yinghua Yan
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, 315020, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
7
|
Zhu Z, Fu H, Zhao Y, Yan Q. Progress in Core-Shell Magnetic Mesoporous Materials for Enriching Post-Translationally Modified Peptides. J Funct Biomater 2024; 15:158. [PMID: 38921532 PMCID: PMC11205187 DOI: 10.3390/jfb15060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Endogenous peptides, particularly those with post-translational modifications, are increasingly being studied as biomarkers for diagnosing various diseases. However, they are weakly ionizable, have a low abundance in biological samples, and may be interfered with by high levels of proteins, peptides, and other macromolecular impurities, resulting in a high limit of detection and insufficient amounts of post-translationally modified peptides in real biological samples to be examined. Therefore, separation and enrichment are necessary before analyzing these biomarkers using mass spectrometry. Mesoporous materials have regular adjustable pores that can eliminate large proteins and impurities, and their large specific surface area can bind more target peptides, but this may result in the partial loss or destruction of target peptides during centrifugal separation. On the other hand, magnetic mesoporous materials can be used to separate the target using an external magnetic field, which improves the separation efficiency and yield. Core-shell magnetic mesoporous materials are widely utilized for peptide separation and enrichment due to their biocompatibility, efficient enrichment capability, and excellent recoverability. This paper provides a review of the latest progress in core-shell magnetic mesoporous materials for enriching glycopeptides and phosphopeptides and compares their enrichment performance with different types of functionalization methods.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Weiyang University Park, Xi’an 710021, China
| | - Hang Fu
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
| | - Yu Zhao
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
| | - Qiulin Yan
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
| |
Collapse
|
8
|
Vállez-Gomis V, Benedé JL, Lara-Molina E, López-Nogueroles M, Chisvert A. A miniaturized stir bar sorptive dispersive microextraction method for the determination of bisphenols in follicular fluid using a magnetic covalent organic framework. Anal Chim Acta 2024; 1289:342215. [PMID: 38245199 DOI: 10.1016/j.aca.2024.342215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Bisphenols, particularly bisphenol A (BPA), are the primary monomers used as additives in the manufacturing of many consumer products. The exposure to these compounds is related to endocrine-disrupting and reproductive effects, among others. For this reason, the development of analytical methods for their determination in biological matrixes is needed to monitor the population exposure to these compounds. Their quantification at ovarian level (i.e., follicular fluid) is interesting for the assessment of the bisphenol content to draw conclusions about infertility problems. However, the background does not meet all requirements by focusing mainly on BPA. RESULTS In this work, a miniaturized stir bar sorptive dispersive microextraction (mSBSDME) approach has been developed for the determination of BPA and eight analogues in follicular fluid. In the proposed method, the sample is previously cleaned-up using a zirconia-based solid-phase extraction cartridge, removing proteins and phospholipids, and then subjected to the mSBSDME for the preconcentration of the analytes. For this purpose, a magnetic covalent organic framework was used as sorbent. A Plackett-Burman design was applied to select the significant variables affecting the mSBSDME. Afterwards, the only significant variable (i.e., sorbent amount) was optimized. Under the optimized conditions, the proposed method was properly validated, and satisfactory analytical parameters in terms of linearity (up to 50 ng mL-1), enrichment factors (8.5-14.3), limits of detection in the low ng mL-1 range, and precision (relative standard deviations below 11.5 %) were obtained. Finally, the method was successfully applied to five samples, detecting BPA and other two analogues. SIGNIFICANCE This method expands the potential applicability of the mSBSDME to other low-availability complex matrixes, which would otherwise be difficult to analyze. Moreover, it offers a valuable tool for monitoring the female population's exposure to bisphenols with the final aim of evaluating if infertility problems of women might be associated to the exposure to these highly endocrine disrupting compounds.
Collapse
Affiliation(s)
- Víctor Vállez-Gomis
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, 46100, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, 46100, Spain
| | - Evelin Lara-Molina
- IVIRMA Barcelona, Barcelona, 08029, Spain; IVI Foundation IVIRMA Global, Biomedical Research Institute La Fe, Valencia, 46026, Spain
| | - Marina López-Nogueroles
- Analytical Unit Platform, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, 46100, Spain.
| |
Collapse
|
9
|
Yuan X, Song J, Wang H, Zhang W, Liu Y, Su P, Yang Y. Dual-functionalized two-dimensional metal-organic framework composite with highly hydrophilicity for effective enrichment of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123920. [PMID: 38101285 DOI: 10.1016/j.jchromb.2023.123920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Protein glycosylation research is currently focused on the development of various functionalized materials that can effectively enrich the levels of glycopeptides in samples. However, most of these materials possess limited glycopeptide-specific recognition sites because of large steric hindrance, unsuitable mass transfer kinetics, and relatively low surface areas. Herein, a highly hydrophilic two-dimensional (2-D) metal-organic framework (MOF) nanosheet modified with glutathione (GSH) and l-cysteine (l-Cys) (denoted as Zr-Fc MOF@Au@GC) has been synthesized for efficient glycopeptide enrichment. Using this composite material, 39 and 44 glycopeptides from horseradish peroxidase (HRP) and human serum immunoglobulin G (IgG) digests were detected, respectively, which represents a higher efficiency for glycopeptide enrichment from model glycoprotein digests than has been previously reported. The material Zr-Fc MOF@Au@GC exhibited ultra-high sensitivity (0.1 fmol/µL), excellent selectivity (weight ratio of HRP tryptic digest to bovine serum albumin (BSA) tryptic digest = 1:2000), good binding capacity (200 mg/g), satisfactory reusability, and long-term storage capacity. In addition, 655 glycopeptides corresponding to 366 glycoproteins were identified from human serum samples. To the best of our knowledge, this is the largest number of glycoproteins detected in human serum samples to date. These results indicated that Zr-Fc MOF@Au@GC has the potential to be used for the enrichment of glycopeptides in biological samples and the analysis of protein glycosylation.
Collapse
Affiliation(s)
- Xiaoyu Yuan
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Han Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenkang Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Ji Y, Li H, Dong J, Lin J, Lin Z. Super-hydrophilic sulfonate-modified covalent organic framework nanosheets for efficient separation and enrichment of glycopeptides. J Chromatogr A 2023; 1699:464020. [PMID: 37104947 DOI: 10.1016/j.chroma.2023.464020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Highly efficient extraction of glycopeptides prior to mass spectrometry detection is extremely crucial for glycoproteomic research, especially in disease biomarker research. Reported here is the first time by applying two-dimensional (2D) covalent organic framework (COFs) nanosheets for highly efficient enrichment of glycopeptides. Particularly, by incorporating hydrophilic monomers through a bottom-up strategy, the 2D COF nanosheets (denoted as NUS-9) displayed an ultra-high graft density of sulfonic groups and super-hydrophilicity. In addition, because of the large surface area, low steric hindrance, high chemical stability, and abundant accessibility sites of 2D COF nanosheets, NUS-9 exhibited remarkable efficiency for glycopeptide enrichment, involving excellent detection sensitivity (0.01 fmol μL-1), outstanding enrichment capability, and good enrichment selectivity (1:1500, horseradish peroxidase (HRP) tryptic digest to bovine serum albumin (BSA) tryptic digest), and recovery (92.2 ± 2.0%). Moreover, the NUS-9 was able to unambiguously detect 631 endogenous glycopeptides from human saliva, demonstrating an unparalleled high efficiency in glycopeptide enrichment. Gene ontology analyses of proteins from human saliva enriched by NUS-9 demonstrated its potential for comprehensive glycoproteome analysis.
Collapse
Affiliation(s)
- Yin Ji
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jinghan Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jiashi Lin
- College of Physical Education, Jimei University, Xiamen, Fujian, 361021, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
11
|
Lu Y, Du C, Ying H, Lin Y, Gu Q, Kong F, Zhao H, Lan M. Facile fabrication of hydrophilic covalent organic framework composites for highly selective enrichment of N-glycopeptides. Talanta 2023; 259:124524. [PMID: 37054624 DOI: 10.1016/j.talanta.2023.124524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023]
Abstract
The development of facilely synthetic materials acts an essential role in glycoproteome analysis, especially for the highly efficient enrichment of N-linked glycopeptides. In this work, a facile and timesaving route was introduced in which COFTP-TAPT served as a carrier and poly (ethylenimine) (PEI) and carrageenan (Carr) were successively coated on the surface via electrostatic interaction. The resultant COFTP-TAPT@PEI@Carr showed remarkable performance in glycopeptide enrichment with high sensitivity (2 fmol μL-1), high selectivity (1:800, molar ratio of human serum IgG to BSA digests), large loading capacity (300 mg g-1), satisfactory recovery (102.4 ± 6.0%) and reusability (at least eight times). Due to the brilliant hydrophilicity and electrostatic interactions between COFTP-TAPT@PEI@Carr and positively charged glycopeptides, the prepared materials could be applied in the identification and analysis in the human plasma of healthy subjects and patients with nasopharyngeal carcinoma. As a result, 113 N-glycopeptides with 141 glycosylation sites corresponding to 59 proteins and 144 N-glycopeptides with 177 glycosylation sites corresponding to 67 proteins were enriched from 2 μL plasma trypsin digests of the control groups and patients with nasopharyngeal carcinoma, respectively. 22 glycopeptides were identified only from the normal controls and 53 glycopeptides were detected only from the other set. The results demonstrated that this hydrophilic material was promising on a large scale and further N-glycoproteome research.
Collapse
Affiliation(s)
- Yichen Lu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengrun Du
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China.
| | - Yunfan Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qinying Gu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fangfang Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
12
|
Xie Z, Feng Q, Zhang S, Yan Y, Deng C, Ding CF. Advances in proteomics sample preparation and enrichment for phosphorylation and glycosylation analysis. Proteomics 2022; 22:e2200070. [PMID: 36100958 DOI: 10.1002/pmic.202200070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
As the common and significant chemical modifications, post-translational modifications (PTMs) play a key role in the functional proteome. Affected by the signal interference, low concentration, and insufficient ionization efficiency of impurities, the direct detection of PTMs by mass spectrometry (MS) still faces many challenges. Therefore, sample preparation and enrichment are an indispensable link before MS analysis of PTMs in proteomics. The rapid development of functionalized materials with diverse morphologies and compositions provides an avenue for sample preparation and enrichment for PTMs analysis. In this review, we summarize recent advances in the application of novel functionalized materials in sample preparation for phosphoproteomes and glycoproteomes analysis. In addition, this review specifically discusses the design and preparation of functionalized materials based on different enrichment mechanisms, and proposes research directions and potential challenges for proteomic PTMs research.
Collapse
Affiliation(s)
- Zehu Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Shun Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China.,Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chunhui Deng
- Department of Chemistry, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China.,Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Gu H, Liu X, Wang S, Chen Z, Yang H, Hu B, Shen C, Wang X. COF-Based Composites: Extraordinary Removal Performance for Heavy Metals and Radionuclides from Aqueous Solutions. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:23. [DOI: doi.org/10.1007/s44169-022-00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 06/25/2023]
|
14
|
Liu Z, Xu M, Zhang W, Miao X, Wang PG, Li S, Yang S. Recent development in hydrophilic interaction liquid chromatography stationary materials for glycopeptide analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4437-4448. [PMID: 36300821 DOI: 10.1039/d2ay01369j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein glycosylation is one of the most important post-translational modifications, and aberrant glycosylation is associated with the occurrence and development of diseases. Deciphering abnormal glycosylation changes can identify disease-specific signatures to facilitate the discovery of potential disease biomarkers. However, glycosylation analysis is challenging due to the diversity of glycans, heterogeneity of glycosites, and poor electrospray ionization of mass spectrometry. To overcome these obstacles, glycosylation is often elucidated using enriched glycopeptides by removing highly abundant non-glycopeptides. Hydrophilic interaction liquid chromatography (HILIC) is widely used for glycopeptide enrichment due to its excellent selectivity and specificity to hydrophilic glycans and compatibility with mass spectrometry. However, the development of HILIC has lagged far behind hydrophobic interaction chromatography, so efforts to further improve the performance of HILIC are beneficial for glycosylation analysis. This review discusses recent developments in HILIC materials and their advanced applications. Based on the physiochemical properties of glycopeptides, the use of amino acids or peptides as stationary phases showed improved enrichment and separation of glycopeptides. We can envision that the use of glycopeptides as stationary phases would definitely further improve the selectivity and specificity of HILIC for glycosylation analysis.
Collapse
Affiliation(s)
- Zhaoliang Liu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Xinyu Miao
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Perry G Wang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| |
Collapse
|
15
|
Ji Y, He Y, Chen R, Zhong C, Li H, Wu Y, Lin Z. Hydrophilic glutathione-modified flower-like hollow covalent organic frameworks for highly efficient capture of N-linked glycopeptides. J Mater Chem B 2022; 10:6507-6513. [PMID: 35993272 DOI: 10.1039/d2tb01403c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly efficient enrichment of N-glycopeptides from complicated biosamples based on mass spectrometry is essential for biomedical applications, especially in disease biomarker research. In this work, glutathione (GSH)-modified hierarchical flower-like hollow covalent organic frameworks loaded with Au nanoparticles (HFH-COFs@Au@GSH) were synthesized for N-glycopeptide enrichment. Due to the abundant accessibility sites, high specific surface area, and inherent high stability of the hierarchical flower-like hollow structure, a large number of Au NPs and hydrophilic GSH can be modified on the HFH-COFs. The HFH-COFs@Au@GSH displayed excellent hydrophilicity and remarkable enrichment performance for N-glycopeptides: low detection limit (0.1 fmol μL-1), large adsorption capacity (200 μg mg-1), great selectivity (1 : 1000, HRP to BSA), and good reusability (at least 5 times). Furthermore, the HFH-COFs@Au@GSH were successfully applied to capture N-linked glycopeptides in human serum, and 308 N-glycosylation peptides corresponding to 84 N-glycosylation proteins with 123 N-glycosylation sites were detected. Gene ontology analyses were used to elucidate the cellular component, biological process and molecular function of detected glycoproteins in human serum, demonstrating the great potential of the HFH-COFs@Au@GSH in N-glycopeptide enrichment for glycoproteomic analysis of complex biological samples.
Collapse
Affiliation(s)
- Yin Ji
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Yanting He
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233000, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Yijing Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
16
|
Hua S, Feng Q, Xie Z, Mao H, Zhou Y, Yan Y, Ding CF. Post-synthesis of covalent organic frameworks with dual-hydrophilic groups for specific capture of serum exosomes. J Chromatogr A 2022; 1679:463406. [DOI: 10.1016/j.chroma.2022.463406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
|
17
|
Wang B, Yan Y, Ding CF. Metal-organic framework-based sample preparation in proteomics. J Chromatogr A 2022; 1671:462971. [DOI: 10.1016/j.chroma.2022.462971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
|