1
|
Wang Z, Qi J, Yang Y, Li C. Insufficient and excessive Ca 2+ intake negatively impact the life history performance and disrupt the hemolymph metabolism of Spodoptera litura. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116921. [PMID: 39182284 DOI: 10.1016/j.ecoenv.2024.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Calcium ions (Ca2+), essential as second messengers in all cells, play a pivotal role as micronutrients in insects. However, few studies have explored the effects of both insufficient and excessive Ca2+ intake on life history performance and population parameters. This study examines the impact of varying Ca2+ intake levels-insufficient (0 mg/kg), appropriate (100 mg/kg), and excessive (250 mg/kg)-on the life history performance and population parameters of Spodoptera litura using two-sex life tables. Insufficient and excessive Ca2+ intakes significantly extended the preadult development period and decreased the preadult survival rates of S. litura, compared to those on an appropriate Ca2+ intake. The population parameters (Intrinsic rate of increase (r), Finite rate of increase (λ), and Net reproductive rate (R0)) of S. litura on a 100 mg/kg diet (r = 0.1364, λ = 1.1462, R0 = 390) were significantly higher than those on a 0 mg/kg diet (r = 0.1091, λ = 1.1153, R0 = 130.52). Additionally, untargeted metabolomics analysis revealed that inappropriate Ca2+ levels (either insufficient or excessive) triggered significant up-regulation of 71.1 % and 92.8 % of the metabolites in the hemolymph, respectively, compared to the appropriate Ca2+ intake. Notably, disruptions in metabolite balance affected critical components such as melatonin and melanin within the tryptophan and tyrosine metabolism pathways. These findings underscore that both insufficient and excessive Ca2+ intakes adversely affect the life history performance and disrupt hemolymph metabolic balance in S. litura.
Collapse
Affiliation(s)
- Zailing Wang
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China.
| | - Jingwei Qi
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yang Yang
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Chuanren Li
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
2
|
Sun D, Gao G, Wen L, Xu Z. Synthesis of weak cation exchange/C 18 bifunctional magnetic polymers for pretreatment and determination of glufosinate and its two metabolites in plasma samples. J Chromatogr A 2024; 1725:464957. [PMID: 38703458 DOI: 10.1016/j.chroma.2024.464957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
This study focuses on the purification and detection of glufosinate (GLUF) and its metabolites N-acetyl GLUF and MPP in plasma samples. A Dikma Polyamino HILIC column was used for the effective retention and separation of GLUF and its metabolites, and the innovative addition of a low concentration of ammonium fluoride solution to the mobile phase effectively improved the detection sensitivity of the target analytes. Monodisperse core-shell weak cation exchange (WCX)/C18 bifunctional magnetic polymer composites (Fe3O4@WCX/C18) were prepared in a controllable manner, and their morphology and composition were fully characterized. The Fe3O4@WCX/C18 microspheres were used as a magnetic solid-phase extraction (MSPE) adsorbent for the sample purification and detection of GLUF and its metabolites in plasma samples combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The purification conditions of Fe3O4@WCX/C18 microspheres for GLUF and its metabolites in spiked plasma samples were optimized to achieve the best MSPE efficiency. The purification mechanisms of the target analytes in plasma samples include electrostatic attraction and hydrophobic interactions. Furthermore, the effect of the molar ratio of the two functional monomers 4-VBA and 1-octadecene in the adsorbent was optimized and it shows that the bifunctional components WCX/C18 have a synergistic effect on the determination of GLUF and its metabolites in plasma samples. In addition, the present study compared the purification performance of the Fe3O4@WCX/C18 microsphere-based MSPE method with that of the commercial Oasis WCX SPE method, and the results showed that the Fe3O4@WCX/C18 microsphere-based MSPE method established in this work had a stronger ability to remove matrix interferences. Under optimal purification conditions, the recoveries of GLUF and its metabolites in plasma were 87.6-111 % with relative standard deviations (RSDs) ranging from 0.2 % to 4.8 %. The limits of detection (LODs, S/N≥3) and limits of quantification (LOQs, S/N≥10) were 0.10-0.18 μg/L and 0.30-0.54 μg/L, respectively. The MSPE-LC-MS/MS method developed in this study is fast, simple, accurate and sensitive and can be used to confirm GLUF intoxication based not only on the detection of the GLUF prototype but also on the detection of its two metabolites.
Collapse
Affiliation(s)
- Dier Sun
- Ningbo No, 2 Hospital, Ningbo, Zhejiang 315010, China
| | - Guosheng Gao
- Ningbo No, 2 Hospital, Ningbo, Zhejiang 315010, China
| | - Lili Wen
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang 315201, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, China
| | - Zemin Xu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang 315201, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, China.
| |
Collapse
|
3
|
Li W, Zhang Y, Zhang W, Hu P, Zhang M, Meng X, Zhang X, Shang M, Duan X, Wang C. Portable SERS-Based POCT Kit for Ultrafast and Sensitive Determining Paraquat in Human Gastric Juice and Urine. ACS OMEGA 2024; 9:18576-18583. [PMID: 38680347 PMCID: PMC11044205 DOI: 10.1021/acsomega.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Paraquat (PQ) poisoning poses a significant public health concern. Unfortunately, point-of-care testing (POCT) of PQ in biofluids remains challenging. This study developed a portable kit that enables swift and reliable identification and quantification of PQ in human urine and gastric juice. The approach employed the surface-enhanced Raman scattering (SERS) technique, leveraging gold-silver core-shell nanoparticles (Au@Ag NPs) as the substrate. The kit comprised a portable Raman spectrometer and three sealed tubes containing Au@Ag NPs colloid, KI solution, and MgSO4 solution. A discernible correlation was observed between signal intensity and the logarithmic concentration, spanning from 5 to 500 μg/L in urine and 10 μg/L to 1 mg/L in gastric juice. The detection limits, calculated from the characteristic peak at 1648 cm -1, were 1.36 and 4.05 μg/L in human urine and gastric juice, respectively. Notably, this POCT kit obviated the need for pretreatment procedures, and the detection process was accomplished within 1 min, yielding satisfactory recoveries. This expeditious time frame is crucial for clinical diagnosis and rescue operations. Compared to conventional methods, this kit demonstrated real-time determinations in nonlaboratory settings. The simplicity and practicality of this POCT assay suggest its significant potential as an innovative alternative for poisoning detection applications.
Collapse
Affiliation(s)
- Wanru Li
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yuxuan Zhang
- The
First Clinical Medical College, Nanjing
Medical University, Nanjing 211166, China
| | - Wei Zhang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Peishan Hu
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Mengping Zhang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xiao Meng
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xinya Zhang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ming Shang
- Department
of Key Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Sciences, Jinan 250000, China
| | - Xiuping Duan
- Emergency
department, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
| | - Cuijuan Wang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
4
|
Pan S, Ye M, Yan P, Guo Y, Zhang D, He Q. Surface multi-walled carbon nanotube modified quaternary amine-functionalized polymers for purification and determination of glyphosate and its four metabolites in plasma samples. J Chromatogr A 2024; 1715:464581. [PMID: 38142508 DOI: 10.1016/j.chroma.2023.464581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
The present study focused on the pretreatment and detection of GLY and its four metabolites AMPA, N-acetyl AMPA, N-methyl GLY and N-acetyl GLY in plasma samples. Multi-walled carbon nanotube-modified quaternary amine-functionalized polymers (QA-PDNV@MWCNTs) were synthesized in a controlled manner by self-assembly, and its morphology and composition were extensively characterized. The QA-PDNV@MWCNTs microspheres were then used as an SPE adsorbent for the preparation and rapid determination of GLY and its four metabolites in plasma samples combined with ultra-performance liquid chromatography-high resolution mass spectrometry (UPLCHRMS). The SPE conditions based on QA-PDNV@MWCNTs were optimized for GLY and its metabolites to obtain the best purification efficiency. The experimental results show that when the adsorbent contains 8% MWCNTs, it can balance the adsorption of target analytes and the purification performance of the adsorbent for impurities. In addition, this study compared the QA-PDNV@MWCNTs based SPE method with the commercial Waters Oasis MAX SPE cartridge and the results showed that the developed method in this study has better resistance to matrix interference. Under optimal conditions, the recoveries of GLY and its metabolites spiked in plasma were 82.6-99.4 % with relative standard deviations (RSDs) of 1.0-7.8 %. The limits of detection (LODs, S/N ≥ 3) and limits of quantification (LOQs, S/N ≥ 9) of the method were 0.05-0.33 μg/L and 0.15-1.00 μg/L, respectively. Finally, the developed QA-PDNV@MWCNTs based SPE-UPLCHRMS method was used to confirm GLY poisoning not only on the basis of the detection of the GLY prototype, but also on the basis of its four metabolites.
Collapse
Affiliation(s)
- Shengdong Pan
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China.
| | - Meijun Ye
- Hangzhou Tea Research Institute, China COOP, Hangzhou, Zhejiang 310016, China
| | - Peng Yan
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China
| | - Yanbo Guo
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China
| | - Dandan Zhang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China
| | - Qian He
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
5
|
Pan S, Li X, Xu X, Zhang D, Xu Z. Synthesis and application of quaternary amine-functionalized core-shell-shell magnetic polymers for determination of metabolites of benzene, toluene and xylene in human urine samples and study of exposure assessment. J Chromatogr A 2023; 1708:464320. [PMID: 37669614 DOI: 10.1016/j.chroma.2023.464320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023]
Abstract
As production processes have evolved, airborne concentrations of benzene, toluene and xylene in many workplaces are already well below the occupational exposure limits. However, studies have shown that low levels of exposure to benzene, toluene and xylene can still cause health effects in people exposed occupationally. However, there is no literature on health risk assessment of internal exposure. In view of this, an analytical method based on quaternary amine-functionalized core-shell-shell magnetic polymers (QA-CSS-MPs) was developed for the determination of seven metabolites in urine by MSPE-UPLC-DAD-HRMS. Furthermore, an improved QuEChERS method for the extraction of seven metabolites from human urine samples was introduced for the first time and satisfactory extraction rates were achieved. In addition, QA-CSS-MPs microspheres with core-shell-shell structure were designed and synthesized, and the morphology, composition and magnetic properties of the materials were fully characterized to verify the rationality of the synthetic route. Subsequently, QA-CSS-MPs microspheres were used as magnetic solid-phase extraction (MSPE) adsorbents for the purification of urine extracts, and UPLC-DAD-HRMS was used for the detection of seven metabolites. As a result, this method allows the accurate determination of seven metabolites in urine samples over an ultra-wide concentration range (0.001-100 mg/L). Under optimal experimental conditions, i.e., 2% hydrochloric acid in urine for the hydrolysis and 20 mg of QA-CSS-MPs for 5 min purification, the spiked recoveries of the seven target metabolites ranged from 81.5% to 117.7% with RSDs of 1.0%-9.4%. The limits of detection (LODs, S/N≥3) for the established method were in the range of 0.2-0.3 μg/L. The developed method was applied to 254 human urine samples for the determination of seven metabolites. The results showed that the concentration distributions of three xylene metabolites in urine, 2-MHA, 3-MHA, 4-MHA and total MHA, showed statistically significant differences for occupational exposure (p<0.001). In addition, the results of the internal exposure assessment showed that there is a high potential health risk associated with occupational exposure processes.
Collapse
Affiliation(s)
- Shengdong Pan
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China.
| | - Xiaohai Li
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China
| | - Xinwu Xu
- Cixi Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315300, China
| | - Dandan Zhang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China
| | - Zemin Xu
- Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, China
| |
Collapse
|
6
|
Zhang S, You Q, Zhuo X, Shi Z, Yao W, Lü T, Zhang D. Rapid and simple determination of organophosphorus pesticides in urine using polydopamine-modified monolithic spin column extraction combined with liquid chromatography–mass spectrometry. J Chromatogr A 2023; 1696:463959. [PMID: 37028207 DOI: 10.1016/j.chroma.2023.463959] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
The determination of organophosphorus pesticides in urine is useful for evaluating human exposure. In this study, a simple micro-solid-phase extraction method based on a polydopamine-modified monolithic spin column combined with liquid chromatography-mass spectrometry (LC-MS) was developed for the determination of six organophosphorus pesticides (dimethoate, dichlorvos, carbofuran, methidathion, phosalone, and chlorpyrifos) in urine samples. A methacrylate polymer monolithic support was prepared in situ in the spin column, and dopamine solution was repeatedly passed through the monolith matrix via centrifugation to generate a polydopamine layer in the polymeric network. All extraction steps were performed via centrifugation. The monolith exhibited good permeability, which enabled high-flow-rate sample loading and significantly reduced the sample pre-treatment time. The addition of polydopamine significantly improved the extraction efficiency of the monolithic spin column owing to the catechol and amine groups in dopamine, which can enhance hydrogen bonding and π-π stacking. Factors affecting the extraction, including the solution pH, centrifugation speed, and desorption solvent, were investigated to determine the optimal extraction conditions. Under the optimal conditions, the OPP detection limits were 0.02-1.32 µg/L. The relative standard deviations of the single column (n = 5) and column-to-column (n = 3) precision for the extraction method were <11%. The monolithic spin column exhibited high stability and could be used for more than 40 extraction cycles. The recoveries for spiked urine samples were 72.1-109.3% (RSDs: 1.6-7.9%). The developed method was successfully applied to the simple and rapid analysis of organophosphorus pesticides in urine samples.
Collapse
|
7
|
Tang S, Huang Y, Zhao S, Hu K. Surface molecularly imprinted-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for highly selective and sensitive direct analysis of paraquat in complicated samples. Talanta 2023; 258:124423. [PMID: 36898307 DOI: 10.1016/j.talanta.2023.124423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Herein, a novel surface molecularly imprinted-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (SMI-MALDI-TOF MS) method for direct target paraquat (PQ) analysis in complicated samples is reported. Notably, a captured analyte-imprinted material can be directly detected via MALDI-TOF MS by using imprinted material as nanomatrix. Using this strategy, the molecular specific affinity performance of surface molecularly imprinted polymers (SMIPs) and the high-sensitivity detection capability of MALDI-TOF MS was integrated. The introduction of SMI endowed the nanomatrix with the capacity for rebinding the target analyte and ensuring specificity, prevented the interfering organic matrix, and enhanced the analyzing sensitivity. By using paraquat (PQ) as a template, dopamine as a monomer, and covalent organic frameworks with a carboxyl group (C-COFs) as a substrate, polydopamine (PDA) was decorated on C-COFs via a simple self-assembly procedure to generate an analyte-based surface molecularly imprinted polymer (C-COF@PDA-SMIP), which served the dual function of SMIP capturing the target analytes and high-efficiency ionization. Thus, a reliable MALDI-TOF MS detection PQ with high selectivity and sensitivity as well as an interference-free background was achieved. The synthesis and enrichment conditions of C-COF@PDA-SMIPs were optimized, and its structure and property were characterized. Under optimal experimental conditions, the proposed method achieved highly selective and ultrasensitive detection of PQ from 5 to 500 pg mL-1, and the limit of detection was as low as 0.8 pg mL-1, which is at least three orders of magnitude lower than that achieved without enrichment. In addition, the specificity of the proposed method was superior to that of C-COFs and nonimprinted polymers. Moreover, this method exhibited reproducibility, stability, and high salt tolerance. Lastly, the practical applicability of the method was successfully verified by analyzing complicated samples, such as grass and orange.
Collapse
Affiliation(s)
- Shuiping Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Kun Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
8
|
Paraquat and Diquat: Recent Updates on Their Pretreatment and Analysis Methods since 2010 in Biological Samples. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020684. [PMID: 36677742 PMCID: PMC9866389 DOI: 10.3390/molecules28020684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Paraquat (PQ) and diquat (DQ) are quaternary ammonium herbicides which have been used worldwide for controlling the growth of weeds on land and in water. However, PQ and DQ are well known to be toxic. PQ is especially toxic to humans. Moreover, there is no specific antidote for PQ poisoning. The main treatment for PQ poisoning is hemoperfusion to reduce the PQ concentration in blood. Therefore, it is essential to be able to detect PQ and DQ concentrations in biological samples. This critical review summarizes the articles published from 2010 to 2022 and can help researchers to understand the development of the sample treatment and analytical methods for the determination of PQ and DQ in various types of biological samples. The sample preparation includes liquid-liquid extraction, solid-phase extraction based on different novel materials, microextration methods, and other methods. Analytical methods for quantifying PQ and DQ, such as different chromatography and spectroscopy methods, electrochemical methods, and immunological methods, are illustrated and compared. We focus on the latest advances in PQ and DQ treatment and the application of new technologies for these analyses. In our opinion, tandem mass spectrometry is a good choice for the determination of PQ and DQ, due to its high sensitivity, high selectivity, and high accuracy. As far as we are concerned, the best LOD of 4 pg/mL for PQ in serum can be obtained.
Collapse
|
9
|
Zhang Y, Wang F, Zhao Z. Metabonomics reveals that entomopathogenic nematodes mediate tryptophan metabolites that kill host insects. Front Microbiol 2022; 13:1042145. [PMID: 36439848 PMCID: PMC9686292 DOI: 10.3389/fmicb.2022.1042145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The entomopathogenic nematode (EPN) Steinernema feltiae, which carries the symbiotic bacterium Xenorhabdus bovienii in its gut, is an important biocontrol agent. This EPN could produce a suite of complex metabolites and toxin proteins and lead to the death of host insects within 24–48 h. However, few studies have been performed on the key biomarkers released by EPNs to kill host insects. The objective of this study was to examine what substances produced by EPNs cause the death of host insects. We found that all densities of nematode suspensions exhibited insecticidal activities after hemocoelic injection into Galleria mellonella larvae. EPN infection 9 h later led to immunosuppression by activating insect esterase activity, but eventually, the host insect darkened and died. Before insect immunity was activated, we applied a high-resolution mass spectrometry-based metabolomics approach to determine the hemolymph of the wax moth G. mellonella infected by EPNs. The results indicated that the tryptophan (Trp) pathway of G. mellonella was significantly activated, and the contents of kynurenine (Kyn) and 3-hydroxyanthranilic acid (3-HAA) were markedly increased. Additionally, 3-HAA was highly toxic to G. mellonella and resulted in corrected mortalities of 62.50%. Tryptophan metabolites produced by EPNs are a potential marker to kill insects, opening up a novel line of inquiry into exploring the infestation mechanism of EPNs.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fang Wang
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Zihua Zhao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- *Correspondence: Zihua Zhao,
| |
Collapse
|
10
|
Blini Marengo Malheiros F, Vicente EF, Gois Morales A, Alberto-Silva C. Efficiency of the removal of tetraethyl pyrophosphate (TEPP) pesticide in water: use of cork granules as a natural adsorbent on acetylcholinesterase activity in neuronal PC12 cell. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:554-560. [PMID: 35583269 DOI: 10.1080/03601234.2022.2077608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tetraethyl pyrophosphate (TEPP) is an organophosphate pesticide that irreversibly inhibits acetylcholinesterase (AChE). Cork powder or granules have been recommended as a sustainable sorbent to remove pesticides from water. In the present study, we evaluated the effectiveness of removing TEPP from water using wine corks to obtain cork granules as natural adsorbent, analyzing the TEPP effects on AChE activity in commercial enzyme from Electrophorus electricus and secreted by neuronal PC12 cells. TEPP inhibited AChE activity in a concentration-dependent manner. For the first time, we showed that different concentrations of TEPP diluted in water after adsorption experiments using cork granules decreased TEPP's inhibitory effects on AChE activity in commercial enzyme and neuronal PC12 cell culture medium. Our results suggest that the optimum removal of TEPP from water by corks was 91.4 ± 4.0%. Overall, the findings support the hypothesis that cork granules can be used to remediate pesticide-contaminated environments, such as those contaminated by organophosphate pesticides, and demonstrate a new application of a biochemical assay on AChE activity using a commercial enzyme or secreted by neuronal PC12 cells in culture as a possible methodologic strategy for evaluating the success of TEPP removal from water.
Collapse
Affiliation(s)
- Fernanda Blini Marengo Malheiros
- Postgraduate Course in Agribusiness and Development, Research Group on Environmental Management and Education (PGEA), São Paulo State University (UNESP), Tupã, SP, Brazil
| | - Eduardo Festozo Vicente
- Department of Biosystems Engineering, São Paulo State University (UNESP), School of Science and Engineering, Tupã, SP, Brazil
| | - Angélica Gois Morales
- Research Group on Environmental Management and Education (PGEA), São Paulo State University (UNESP), Department of Management, Development and Tecnology, Tupã, SP, Brazil
| | - Carlos Alberto-Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| |
Collapse
|