1
|
Chen R, Han Y, Bai L, Wang M, Yan H. Enhanced detection of catecholamines in human urine using Cis-diol-microporous organic networks with PT-SPE and HPLC-MS/MS. J Chromatogr A 2024; 1736:465408. [PMID: 39388781 DOI: 10.1016/j.chroma.2024.465408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
A novel cis-diol-microporous organic networks (MONs-2OH) material was synthesized via room temperature and Sonogashira coupling reactions, which exhibits exceptional adsorption properties for catecholamines (CAs). MONs-2OH demonstrates robust hydrogen bonding and π-π stacking interactions, crucial for effective adsorption. The MONs-2OH was incorporated into pipette tip solid-phase extraction and developed a new method for detecting CAs in human urine using HPLC-MS/MS. Characterization of the adsorbent revealed its high stability, large specific surface area, abundant phenolic hydroxyl groups, rapid extraction speed, and superior adsorption efficiency. The method achieved a wide linear range (0.5-500 ng/mL), low detection limits (0.06-0.26 ng/mL), high accuracy (90.4 %-99.4 %), and excellent precision (RSD ≤ 10 %). Comparative studies showed MONs-2OH outperforms commercial adsorbents in terms of recovery and adsorption capacity. The results underscore the potential of MONs-2OH for rapid and sensitive CAs determination, offering significant advantages for the auxiliary diagnosis of depression and enhancing the application of PT-SPE in sample pretreatment.
Collapse
Affiliation(s)
- Rong Chen
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Yehong Han
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Ligai Bai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Mingyu Wang
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding 071002, China.
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Qin H, Xu R, Qiao L, Zhai X, Guo P, Li C, Han B. Preparation and evaluation of Fe 3O 4@C@NiCo-LDH@CDs composites for magnetic solid-phase extraction of trace endocrine disruptors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6877-6887. [PMID: 39268779 DOI: 10.1039/d4ay00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The widespread use of endocrine disruptors (EDPs) has certain potential hazards to organisms and environments, and it is particularly important to develop effective pretreatment methods before detection of EDPs in complex samples. In this work, a novel magnetic nanocomposite decorated with layered double hydroxides (LDHs) and carbon dots (CDs) was designed and prepared for magnetic solid-phase extraction (MSPE) of EDPs (bisphenol S, bisphenol F, bisphenol A, bisphenol AF, diethylstilbestrol and 4-cumylphenol) combined with high-performance liquid chromatography-ultraviolet (HPLC-UV) detection. The prepared composites were characterized by field emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the adsorption mechanism towards these EDPs might be mainly based on hydrogen bonds and π-π conjugation. Under the optimized conditions, the proposed method showed limits of detection within 0.05-0.50 μg L-1 and limits of quantitation within 0.2-2.0 μg L-1, and good linearity (R2 ≥ 0.9975) was presented in the range of 0.2-200 μg L-1. Finally, the Fe3O4@C@NiCo-LDH@CDs composite-based MSPE-HPLC-UV method was applied for enrichment and determination of EDPs in water, milk, and tea beverage samples with recoveries in the range of 81.2-119.8% and relative standard deviations below 9.7%.
Collapse
Affiliation(s)
- Honglin Qin
- School of Chemical Engineering, University of Technology, Panjin 124221, China.
| | - Ruozhu Xu
- School of Chemical Engineering, University of Technology, Panjin 124221, China.
| | - Lizhen Qiao
- School of Chemical Engineering, University of Technology, Panjin 124221, China.
- Huajin Aramco Petrochemical Company Limited, Panjin 124211, China
| | - Xupeng Zhai
- Huajin Aramco Petrochemical Company Limited, Panjin 124211, China
| | - Peixin Guo
- Huajin Aramco Petrochemical Company Limited, Panjin 124211, China
| | - Chen Li
- Huajin Aramco Petrochemical Company Limited, Panjin 124211, China
| | - Bingyan Han
- School of Chemical Engineering, University of Technology, Panjin 124221, China.
| |
Collapse
|
3
|
Zhao T, Sun A, Xu R, Chen R. Enhancing solid-phase extraction of tetracyclines with a hybrid biochar sorbent: A comparative study of chlorella and bamboo biochars. J Chromatogr A 2024; 1730:465092. [PMID: 38914029 DOI: 10.1016/j.chroma.2024.465092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Biochar, a sustainable sorbent derived from pyrolyzed biomass, has garnered attention for its efficacy in solid-phase extraction (SPE) of antibiotics, with a particular focus on tetracyclines (TCs). Despite its recognized potential, the intricate separation mechanisms operative in biochar-based SPE systems have not been fully deciphered. This investigation contrasts chlorella biochar against commercial bamboo biochar, harnessing an array of analytical methodologies-microstructure characterization, adsorption thermodynamics, competitive adsorption kinetics, H+ back titration, and selectivity adsorption studies-complemented by a Box-Behnken design for the optimization of chlorella/bamboo-SPE and subsequent application in the analysis of animal-derived foodstuffs. The study unveils that a hybrid sorbent, integrating nitrogen-doped microporous chlorella biochar with mesoporous bamboo biochar in a 95/5 mass ratio, markedly diminishes irreversible adsorption while enhancing selectivity, surpassing the performance of single biochar SPE systems. The elucidated separation mechanisms implicate a partition model, propelled by oxygen-rich functional groups on chlorella biochar and the rapid adsorption kinetics of bamboo biochar, all orchestrated by electrostatic interactions within the mixed biochar framework. Moreover, the synergy of mixed biochar-SPE with high-performance liquid chromatography (HPLC) demonstrates exceptional proficiency in detecting TCs in animal viscera, evidenced by recovery rates spanning 80.80 % to 106.98 % and RSDs ranging from 0.24 % to 14.69 %. In essence, this research not only sheds light on the multifaceted factors influencing SPE efficiency but also propels the use of biochar towards new horizons in environmental monitoring and food safety assurance.
Collapse
Affiliation(s)
- Tao Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Aonan Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China
| | - Ruoxuan Xu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China
| | - Rongqi Chen
- School of Agriculture Science and Technology, Shandong Agriculture and Engineering University, Ji'nan 250100, China.
| |
Collapse
|
4
|
Kumar V, Sharma P, Pasrija R, Chakraborty P, Basheer T, Thomas J, Sehgal SS, Gupta M, Muzammil K. Engineered lignocellulosic based biochar to remove endocrine-disrupting chemicals: Assessment of binding mechanism. CHEMOSPHERE 2024; 362:142584. [PMID: 38866332 DOI: 10.1016/j.chemosphere.2024.142584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The safety and health of aquatic organisms and humans are threatened by the increasing presence of pollutants in the environment. Endocrine disrupting chemicals are common pollutants which affect the function of endocrine and causes adverse effects on human health. These chemicals can disrupt metabolic processes by interacting with hormone receptors upon consumptions by humans or aquatic species. Several studies have reported the presence of endocrine disrupting chemicals in waterbodies, food, air and soil. These chemicals are associated with increasing occurrence of obesity, metabolic disorders, reproductive abnormalities, autism, cancer, epigenetic variation and cardiovascular risk. Conventional treatment processes are expensive, not environment friendly and unable to achieve complete removal of these harmful chemicals. In recent years, biochar from different sources has gained a considerable interest due to their adsorption efficiency with porous structure and large surface areas. biochar derived from lignocellulosic biomass are widely used as sustainable catalysts in soil remediation, carbon sequestration, removal of organic and inorganic pollutants and wastewater treatment. This review conceptualizes the production techniques of biochar from lignocellulosic biomass and explores the functionalization and interaction of biochar with endocrine-disrupting chemicals. This review also identifies the further needs of research. Overall, the environmental and health risks of endocrine-disrupting chemicals can be dealt with by biochar produced from lignocellulosic biomass as a sustainable and prominent approach.
Collapse
Affiliation(s)
- Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, JAIN (Deemed to be University), Whitefield, Bangalore, 560066, Karnataka, India.
| | - Thazeem Basheer
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Mundur, Palakkad, 678592, Kerala, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| | - Manish Gupta
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| |
Collapse
|
5
|
Wang B, Chen Y, Li W, Liu Y, Xia X, Xu X, Yang Y, Chen D. Magnetic phytic acid-modified kapok fiber biochar as a novel sorbent for magnetic solid-phase extraction of antidepressants in biofluids. Anal Chim Acta 2024; 1296:342295. [PMID: 38401926 DOI: 10.1016/j.aca.2024.342295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) of antidepressants is essential for monitoring patient medication to avoid drug toxicity, complications, or nonadherence. Chromatographic techniques with high sensitivity and reproducibility are the main detection method for antidepressants. Effective pretreatment of biological sample processes is necessary prior to instrumental analysis. Magnetic solid-phase extraction (MSPE) has received much attention for its advantages of simple operation, rapidity, cost-effectiveness and low organic solvent consumption. Therefore, the development of a suitable and green magnetic sorbent for the detection of antidepressants in plasma and urine is apparently necessary. (88) RESULTS: A magnetic phytic acid-modified kapok fiber biochar sorbent (Fe3O4/PAKFBC) was successfully synthesized by pyrolytic impregnation and physical milling methods. Fe3O4/PAKFBC exhibited a large specific surface area (214 m2 g-1) and a rich pore structure (5-10 nm). The extraction equilibrium, using 10 mg Fe3O4/PAKFBC, can be completed in about 1 min. The density functional theory (DFT) results showed that the adsorption mechanism of Fe3O4/PAKFBC on the six antidepressants mainly included electrostatic interactions, van der Waals interactions, π-π interactions and weak hydrogen bonding. Examination using the greenness assessment tools showed that the developed method exhibited excellent greenness. By combining with liquid chromatography-ultraviolet (LC-UV), a quantitative method with good linearity (R2 > 0.993) and relative recoveries (92.4-107.7%) and negligible matrix effect (-11.5-6.0%) was developed. The Fe3O4/PAKFBC successfully detected six antidepressants in plasma and urine samples, requiring no pH adjustment with buffer salts. (142) SIGNIFICANCE: The environmental sustainability of the proposed methods was affirmed by six greenness evaluation tools, all indicating exceptional eco-friendliness. The Fe3O4/PAKFBC demonstrated outstanding greenness in both its creation and analytical application, proving highly effective in real sample applications and showcasing potential for broader use. This study contributes to a deeper and broader understanding of the microscopic adsorption mechanism, which can help in the optimization and development of more green sorbents. (69).
Collapse
Affiliation(s)
- Bin Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yongyue Chen
- College of Public Health, Zhengzhou, 450001, Henan, China
| | - Wenxuan Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuwei Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xudong Xia
- Center for Drug Reevaluation of Henan, Zhengzhou, 450008, Henan, China
| | - Xia Xu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, Henan, China
| | - Yongli Yang
- College of Public Health, Zhengzhou, 450001, Henan, China
| | - Di Chen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
6
|
Wang Z, Xie S, Zhang W, Chen H, Ding Q, Xu J, Yu Q, Zhang L. Mechanochemical synthesis ionic covalent organic frameworks/cotton composites for pipette tip solid-phase extraction of domoic acid in seafood. Talanta 2024; 269:125485. [PMID: 38048683 DOI: 10.1016/j.talanta.2023.125485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
Pipette tip solid-phase extraction (PT-SPE) as a miniaturized solid-phase extraction technique have a wide range of applications in the field of sample pretreatment. In this study, ionic covalent organic frameworks@cotton (iCOF@cotton) were facilely synthesized by mechanochemical grinding method only in half an hour, and used as the adsorbents of PT-SPE. The synthesized iCOF@cotton not only had high specific surface area, suitable pore structure and cationic charge groups of iCOF that can extract polar targets quickly, but also reduced the problem of high back pressure of PT-SPE by the addition of cotton, thus accelerating extraction time. Combined with high performance liquid chromatographic tandem mass spectrometry (HPLC-MS/MS), an efficient and sensitive method was established for detection of domoic acid (DA, a toxin produced by algae). Under the optimal conditions, the proposed analysis method displayed excellent analytical performance, including broad range of linearity (10-1000 pg mL-1), low limit of detection (LOD, 5 pg mL-1), high correlation coefficient (0.9993), satisfactory precision (RSDs ≤6.4 %). In addition, the developed method was applied to the detection of DA in marine samples, and detected trace DA (18.6 pg mL-1) with satisfactory recovery (85.7%-107.2 %). The above results indicated that the prepared iCOF@cotton have great potential as the adsorbents for PT-SPE.
Collapse
Affiliation(s)
- Zhiyong Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shiye Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
7
|
Molina-Balmaceda A, Rojas-Candia V, Arismendi D, Richter P. Activated carbon from avocado seed as sorbent phase for microextraction technologies: activation, characterization, and analytical performance. Anal Bioanal Chem 2024:10.1007/s00216-024-05203-1. [PMID: 38393340 DOI: 10.1007/s00216-024-05203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
According to green analytical chemistry principles, the use of agricultural byproducts as sorbent phases is an interesting topic due to their lignocellulosic origin, as they are biodegradable and inexpensive. To the best of our knowledge, this is the first study in which avocado seed and avocado seed activated carbon are proposed as sustainable sorbents for solid-phase microextraction technologies, which were used to assess the proof of concept. Rotating disk sorptive extraction (RDSE) was used as a model technology and ibuprofen (Ibu) and 1-hydroxy-ibuprofen (1-OH-Ibu) as representative analytes. It was found that activated carbon (AC) prepared at 600 °C with an impregnation ratio (raw material/activating agent (ZnCl2), w/w) of 1:1.2 had better extraction efficiency than other ACs obtained at different temperatures, impregnation ratios, and activating agents (K2CO3). Characterization revealed several differences between natural avocado seed, biochar prepared at 600 °C, and selected AC since the typical functional groups of the natural starting material begin to disappear with pyrolysis and increasing the surface area and pore volume, suggesting that the main interactions between analytes and the sorbent material are pore filling and π-π stacking. By using this AC as the sorbent phase, the optimal extraction conditions in RDSE were as follows: the use of 50 mg of sorbent in the disk, 30 mL of sample volume, pH 4, 90 min of extraction time at a rotation velocity of the disk of 2000 rpm, and methanol as the elution solvent. The extracts were analyzed via gas chromatography coupled to mass spectrometry (GC-MS). The method provided limits of detection of 0.23 and 0.07 µg L-1 and recoveries of 81% and 91% for Ibu and 1-OH-Ibu, respectively. When comparing the extraction efficiency of the selected activated carbon with those provided by Oasis® HLB and C18 in RDSE, nonsignificant differences were observed, indicating that avocado seed activated carbon is a suitable alternative to these commercial materials.
Collapse
Affiliation(s)
- Alejandra Molina-Balmaceda
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Valentina Rojas-Candia
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Daniel Arismendi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| |
Collapse
|
8
|
Zhang M, Li Y, Zhang S, Li L, Chen Q, Hou X. Matrix complete dissolution concatenated biochar magnetic solid-phase extraction of benzotriazole ultraviolet stabilizers in polyester fibers prior to UPLC-MS/MS analysis. Mikrochim Acta 2023; 190:496. [PMID: 38038777 DOI: 10.1007/s00604-023-06074-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Matrix complete dissolution combined with magnetic solid-phase extraction (MSPE) was applied to extract four benzotriazole ultraviolet stabilizers (BUVSs) from polyester curtains. Ultra-performance liquid chromatography tandem mass spectrometry was coupled to perform the content of trace BUVSs. The procedure was being developed in two steps. The polymer matrix was initially thoroughly dissolved by 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) followed by the addition of precipitant to separate the target from the dissolved polymer matrix. Next, triiron tetraoxide/biochar magnetic material was prepared and utilized as the sorbent for purification of the extract. Ultrasonic extraction coupled with the MSPE method and the proposed method was compared. Better extraction recovery of four BUVSs was acquired by the novel developed extraction method. The purification effect of the new extraction method was established by comparing the matrix effect of the polymer complete dissolution method and the polymer complete dissolution combined with the MSPE method. The extraction parameters were investigated. Under the optimized conditions, correlation coefficient (r) ranging from 0.9969 to 0.9997, limit of detection of 0.2 to 0.8 ng·g-1, and the recovery varied from 81.5 to 102.7% with RSD smaller than 10.7% were obtained for four BUVSs, respectively. This study provides a potential strategy for the efficient extraction and sensitive determination of BUVSs in polyester fibers samples.
Collapse
Affiliation(s)
- Mengdan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Liaoning Province, Shenyang, 110016, People's Republic of China
| | - Yingying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Liaoning Province, Shenyang, 110016, People's Republic of China
| | - Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning Province, Shenyang, 110016, People's Republic of China
| | - Lin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Liaoning Province, Shenyang, 110016, People's Republic of China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning Province, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
9
|
Xiang JJ, Yuan LJ, Liao QG, Zhang DW, Luo LG. Synthesis of azo-linked covalent organic polymers for pipette tip solid-phase extraction of sedative residues from animal tissues samples. ANAL SCI 2023; 39:1939-1946. [PMID: 37584814 DOI: 10.1007/s44211-023-00406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
Azo-linked covalent organic polymers (ACOPs) were synthesized by a simple azo reaction, with 2,2'-bis(trifluoromethyl)benzidine and 1,3,5-trihydroxybenzene as the monomers. The preparation process was mild, green, and environmental-friendly, avoiding the use of high temperature, metal catalysis, and harmful organic reagent. The obtained ACOPs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and Brunauer-Emmett-Teller. With the prepared ACOPs as adsorbent, a method of pipette tip solid-phase extraction-liquid chromatography-tandem mass spectrometry detection (PTSPE-LC-MS/MS) was proposed for the analysis of target sedatives in animal tissues. Furthermore, the parameters for the extraction of five sedatives, including the amount of adsorbent, pH value, ion strength, elution solvent and volume, were investigated. Under the optimized conditions, the linear dynamic range was found from 0.1 to 10.0 μg kg-1, and the limits of detection were ranged from 0.02 to 0.1 μg kg-1. The method was assessed by the analysis of target sedatives in animal tissues, and the recoveries for the spiked pork muscle and pork liver samples were 84-102% and 83-101%, respectively. The results show that the developed method of PTSPE-LC-MS/MS with ACOPs as adsorbent is efficient for the analysis of trace sedatives in animal tissues.
Collapse
Affiliation(s)
- Jian Jun Xiang
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Li Juan Yuan
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qie Gen Liao
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Da Wen Zhang
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Lin Guang Luo
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| |
Collapse
|
10
|
Xu J, Li Y, Yu L, Pang Y, Shen X, Liu J. Metal-organic frameworks modified melamine foam in pipette-tip for rapid solid-phase extraction of organophosphorus pesticides in fruits and vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108774-108782. [PMID: 37755595 DOI: 10.1007/s11356-023-30055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
In this work, metal-organic frameworks (MOFs) including Fe-MIL-101 and Ti-MIL-125 were prepared and fixed on the melamine foam (MF) by polyvinylidene fluoride (PVDF) to prepare MF/PVDF/MOFs, which was used as adsorbents in pipette-tip solid-phase extraction (PT-SPE) for rapid extraction of organophosphorus pesticides (OPPs). Then, a gas chromatograph-flame thermionic detector (GC-FTD) was used for simultaneous analysis of Dimethoate (DMT), Iprobenfos (IBF), Parathion-methyl (PAM), and Chlorpyrifos (CPF). The morphology, crystal structure, and functional groups of MF/PVDF/MOFs were characterized, indicating that Ti-MIL-125 and Fe-MIL-101 were successfully synthesized and distributed on MF. The Fe-MIL-101 and Ti-MIL-125 showed good extraction ability for OPPs, which was mainly due to the π-π interaction and the multiple porous structures. Under the optimal conditions, the limit of detection (LODs) of four OPPs was 0.03-0.14 μg L-1 and the RSDs were less than 9.9%. The developed PT-SPE method showed a short extraction time (<3 min). The recoveries in fruits and vegetables (Celery, cabbages, and oranges) ranged from 75.3%-118.8% (RSDs<9.6%). The prepared MF/PVDF/MOFs demonstrated the efficient extraction performance of OPPs, contributing to the rapid pretreatment of OPPs from food and the environment.
Collapse
Affiliation(s)
- Jinjie Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Yongli Li
- Technology Center of Chengdu Customs, Chengdu, 610041, China
| | - Lihong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Yuehong Pang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Xiaofang Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
| | - Jun Liu
- Technology Center of Chengdu Customs, Chengdu, 610041, China
| |
Collapse
|
11
|
Borsatto JVB, Maciel EVS, Cifuentes A, Lanças FM. Applicability and Limitations of a Capillary-LC Column-Switching System Using Hybrid Graphene-Based Stationary Phases. Molecules 2023; 28:4999. [PMID: 37446660 DOI: 10.3390/molecules28134999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Graphene oxide sheets fixed over silica particles (SiGO) and their modification functionalized with C18 and endcapped (SiGO-C18ec) have been reported as sorbents for extraction and analytical columns in LC. In this study, a SiGO column was selected as the extraction column and a SiGO-C18ec as the analytical column to study the applicability and limitations of a column-switching system composed exclusively of columns packed with graphene-based sorbents. Pyriproxyfen and abamectin B1a were selected as the analytes, and orange-flavored carbonated soft drinks as the matrix. The proposed system could be successfully applied to the pyriproxyfen analysis in a concentration range between 0.5 to 25 µg/mL presenting a linearity of R2 = 0.9931 and an intra-day and inter-day accuracy of 82.2-111.4% (RSD < 13.3%) and 95.5-99.8% (RSD < 12.7%), respectively. Furthermore, the matrix composition affected the area observed for the pyriproxyfen: the higher the concentration of orange juice in the soft drink, the higher the pyriproxyfen the signal observed. Additionally, the SiGO extraction column presented a life use of 120 injections for this matrix. In contrast, the proposed system could not apply to the analysis of abamectin B1a, and the SiGO-C18ec analytical column presented significant tailing compared to a similar approach with a C18 analytical column.
Collapse
Affiliation(s)
- João Victor Basolli Borsatto
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Edvaldo Vasconcelos Soares Maciel
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Fernando Mauro Lanças
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
| |
Collapse
|
12
|
Ning Y, Xu Y, Bao J, Wang W, Wang AJ. β-cyclodextrin-functionalized magnetic graphene oxide for the efficient enrichment of bisphenols in milk and milk packaging. J Chromatogr A 2023; 1692:463854. [PMID: 36780847 DOI: 10.1016/j.chroma.2023.463854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
In this work, β-cyclodextrin-functionalized magnetic graphene oxide (NiFe2O4@GO@β-CD) was synthesized and employed as magnetic solid-phase extraction adsorbent for the extraction of bisphenols before high performance liquid chromatography analysis. The modification of β-cyclodextrin could enhance the adsorption performance of NiFe2O4@GO@β-CD towards bisphenols through the host-guest interaction and hydrogen-bond interaction. Under the optimal conditions, good linearities between peak area and concentration of bisphenols (1 - 300 μg L-1, r ≥ 0.9989) were obtained with the limits of detection (S/N = 3) in the range of 0.050 - 0.10 μg L-1. The recoveries of bisphenols in milk and milk packaging ranged from 78.0% to 101.6%. Moreover, NiFe2O4@GO@β-CD showed stable chemical properties and good reusability with the recoveries of bisphenols remained above 80.0% after 12 MSPE cycles. The adsorption characteristics of NiFe2O4@GO@β-CD towards bisphenols fitted well with the pseudo-second-order kinetic model and Langmuir model. The hydrogen-bond interaction, π-π interaction, host-guest interaction and electrostatic interaction between sorbent and bisphenols played important role during the adsorption process. The developed method showed potential applications for the analysis of trace bisphenols in milk and milk packaging.
Collapse
Affiliation(s)
- Yuhan Ning
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yang Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jingyi Bao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
13
|
Yang D, Li S, Zhao D, Zou T, Liu X, Pang J, Zhuang W, Yan Z. Secondary growth synthesis of covalent organic framework modified electrospun nanofibers for extraction of estrogens in milk samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
14
|
Dong M, He L, Jiang M, Zhu Y, Wang J, Gustave W, Wang S, Deng Y, Zhang X, Wang Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1679. [PMID: 36767042 PMCID: PMC9914318 DOI: 10.3390/ijerph20031679] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water contaminated with emerging pollutants has become a serious environmental issue globally. Biochar is a porous and carbon-rich material produced from biomass pyrolysis and has the potential to be used as an integrated adsorptive material. Many studies have shown that biochar is capable to adsorb emerging pollutants from aquatic systems and could be used to solve the water pollution problem. Here, we provided a dual perspective on removing emerging pollutants from aquatic systems using biochar and analyzed the emerging pollutant removal efficiency from the aspects of biochar types, pollutant types and coexistence with heavy metals, as well as the associated mechanisms. The potential risks and future research directions of biochar utilization are also presented. This review aims to assist researchers interested in using biochar for emerging pollutants remediation in aquatic systems and facilitate research on emerging pollutants removal, thereby reducing their environmental risk.
Collapse
Affiliation(s)
- Mingying Dong
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lizhi He
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, China
| | - Mengyuan Jiang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau 4912, Bahamas
| | - Shuo Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Deng
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
15
|
Xu J, Pang Y, Yan Z, Shen X. Ti4+ modified melamine foam in the pipette tip for effective solid-phase extraction of glyphosate in aqueous samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Liu Y, Dang X, Ding H, Chen H. Specific Recognition and Solid Phase Extraction of Three Primary Aromatic Amines Based on Molecularly Imprinted Polymer Monolith for the Migration Detection in Food Contact Materials. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|