1
|
Vallamkonda B, Sethi S, Satti P, Das DK, Yadav S, Vashistha VK. Enantiomeric Analysis of Chiral Drugs Using Mass Spectrometric Methods: A Comprehensive Review. Chirality 2024; 36:e23705. [PMID: 39105272 DOI: 10.1002/chir.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Chirality plays a crucial role in the drug development process, influencing fundamental chemical and biochemical processes and significantly affecting our daily lives. This review provides a comprehensive examination of mass spectrometric (MS) methods for the enantiomeric analysis of chiral drugs. It thoroughly investigates MS-hyphenated techniques, emphasizing their critical role in achieving enantioselective analysis. Furthermore, it delves into the intricate chiral recognition mechanisms inherent in MS, elucidating the fundamental principles that govern successful chiral separations. By critically assessing the obstacles and potential benefits associated with each MS-based method, this review offers valuable insights for researchers navigating the complexities of chiral analysis. Both qualitative and quantitative approaches are explored, presenting a comparative analysis of their strengths and limitations. This review is aimed at significantly enhancing the understanding of chiral MS methods, serving as a crucial resource for researchers and practitioners engaged in enantioselective studies.
Collapse
Affiliation(s)
- Bhaskar Vallamkonda
- Department of Pharmaceutical Science, VIGNAN'S Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| | - Sonika Sethi
- Department of Chemistry, GD Goenka University, Gurugram, Haryana, India
| | - PhanikumarReddy Satti
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | | | - Suman Yadav
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi, India
| | | |
Collapse
|
2
|
Gavrilović I, Wüst B, Danaceau J, Braidman E, de la Torre X, Botrè F, Parr MK, Cowan D. Routine application of SFC-MS in doping control: Analysis of 3 × 1000 urine samples using three different SFC-MS instruments. Drug Test Anal 2024; 16:726-736. [PMID: 38361255 DOI: 10.1002/dta.3652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/17/2024]
Abstract
Supercritical fluid chromatography-mass spectrometry (SFC-MS) has proved to be a beneficial tool for sample analysis for a wide variety of compounds and, as such, has recently gained the attention of the anti-doping community. We have tested the applicability of SFC-MS for routine doping control analysing approximately 3 × 1000 identical anti-doping samples utilising SFC-MS instruments from three different vendors: Agilent Technologies, Waters Corporation and Shimadzu Corporation. A 'dilute and inject' approach either without or after hydrolysis of glucuronide metabolites was applied. Most of the compounds included in our study demonstrated excellent chromatography, whereas some showed co-elution with endogenous interferences requiring MS discrimination. Retention times typically were very stable within batches (%CV ≤ 0.5%), although this appeared to be analyte and column dependent. Chromatographic peak shape was good (symmetrical) and stable over the period of the testing without any change of column. Our results suggest that SFC-MS is a sensitive, reproducible and robust analytical tool ready to be used in anti-doping laboratories alongside the currently applied techniques such as gas and liquid chromatography coupled to mass spectrometry. Even if instruments are designed slightly differently, all three setups demonstrated their fitness for the purpose in anti-doping testing.
Collapse
Affiliation(s)
- Ivana Gavrilović
- Drug Control Centre, King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Bernhard Wüst
- Agilent Technologies GmbH, Hewlett Packard Straße 8, Waldbronn, Germany
| | | | | | | | - Francesco Botrè
- Laboratorio Antidoping FMSI, Rome, Italy
- REDs - Research and Expertise in Antidoping Sciences, ISSUL - Institute de Sciences du Sport, Université de Lausanne, Lausanne, Switzerland
| | | | - David Cowan
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| |
Collapse
|
3
|
Ibrahim AE, El Gohary NA, Aboushady D, Samir L, Karim SEA, Herz M, Salman BI, Al-Harrasi A, Hanafi R, El Deeb S. Recent advances in chiral selectors immobilization and chiral mobile phase additives in liquid chromatographic enantio-separations: A review. J Chromatogr A 2023; 1706:464214. [PMID: 37506464 DOI: 10.1016/j.chroma.2023.464214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
For decades now, the separation of chiral enantiomers of drugs has been gaining the interest and attention of researchers. In 1991, the first guidelines for development of chiral drugs were firstly released by the US-FDA. Since then, the development in chromatographic enantioseparation tools has been fast and variable, aiming at creating a suitable environment where the physically and chemically identical enantiomers can be separated. Among those tools, the immobilization of chiral selectors (CS) on different stationary phases and the chiral mobile phase additives (CMPA) which have been progressed and studied extensively. This review article highlights the major advances in immobilization of CS together with their different recognition mechanisms as well as CMPA as a cheaper and successful alternative for chiral stationary phases. Moreover, the role of molecular modeling tool as a pre-step in the choice of CS for evaluating possible interactions with different ligands has been pointed up. Illustrations of reported methods and updates for immobilized CS and CMPA have been included.
Collapse
Affiliation(s)
- Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Nesrine Abdelrehim El Gohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Dina Aboushady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Liza Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shereen Ekram Abdel Karim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Magy Herz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Rasha Hanafi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig 38092, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
4
|
Li W, Yang J, Zhao F, Xie X, Pan J, Qu H. Application of the Analytical Procedure Lifecycle Concept to a Quantitative 1H NMR Method for Total Dammarane-Type Saponins. Pharmaceuticals (Basel) 2023; 16:947. [PMID: 37513859 PMCID: PMC10383815 DOI: 10.3390/ph16070947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Dammarane-type saponins (DTSs) exist in various medicinal plants, which are a class of active ingredients with effects on improving myocardial ischemia and immunomodulation. In this study, a quantitative 1H NMR method of total DTSs in herbal medicines was developed based on the analytical procedure lifecycle. In the first stage (analytical procedure design), the Ishikawa diagram and failure mode effects and criticality analysis were used to conduct risk identification and risk ranking. Plackett-Burman design and central composite design were used to screen and optimize critical analytical procedure parameter. Then, the method operable design region was obtained through modeling. In the second stage (analytical procedure performance qualification), the performance of methodological indexes was investigated based on analytical quality by design. As examples of continued procedure performance verification, the method was successfully applied to determine the total DTSs in herbal pharmaceutical preparations and botanical extracts. As a general analytical method to quantify total DTSs in medicinal plants or pharmaceutical preparations, the developed method provides a new quality control strategy for various products containing dammarane-type saponin.
Collapse
Affiliation(s)
- Wenzhu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Jiayu Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Fang Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Xie
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Innovation Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Affiliation(s)
- Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Park G, Kim MK, Go SH, Choi M, Jang YP. Analytical Quality by Design (AQbD) Approach to the Development of Analytical Procedures for Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:2960. [PMID: 36365413 PMCID: PMC9653622 DOI: 10.3390/plants11212960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 05/14/2023]
Abstract
Scientific regulatory systems with suitable analytical methods for monitoring quality, safety, and efficacy are essential in medicinal plant drug discovery. There have been only few attempts to adopt the analytical quality by design (AQbD) strategy in medicinal plants analysis over the last few years. AQbD is a holistic method and development approach that understands analytical procedure, from risk assessment to lifecycle management. The enhanced AQbD approach reduces the time and effort necessary to develop reliable analytical methods, leads to flexible change control through the method operable design region (MODR), and lowers the out-of-specification (OOS) results. However, it is difficult to follow all the AQbD workflow steps in the field of medicinal plants analysis, such as defining the analytical target profiles (ATPs), identifying critical analytical procedure parameters (CAPPs), among others, because the complexity of chemical and biological properties in medicinal plants acts as a barrier. In this review, various applications of AQbD to medicinal plant analytical procedures are discussed. Unlike the analysis of a single compound, medicinal plant analysis is characterized by analyzing multiple components contained in biological materials, so it will be summarized by focusing on the following points: Analytical methods showing correlations within analysis parameters for the specific medicinal plant analysis, plant raw material diversity, one or more analysis targets defined for multiple phytochemicals, key analysis attributes, and analysis control strategies. In addition, the opportunities available through the use of design-based quality management techniques and the challenges that coexist are also discussed.
Collapse
Affiliation(s)
- Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Min Kyoung Kim
- Division of Pharmacognosy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Seung Hyeon Go
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Minsik Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|