1
|
McNeil BL, Ramogida CF. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Chem Soc Rev 2024; 53:10409-10449. [PMID: 39360601 DOI: 10.1039/d4cs00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Recent clinical success with metal-based radiopharmaceuticals has sparked an interest in the potential of these drugs for personalized medicine. Although often overlooked, the success and global impact of nuclear medicine is contingent upon the purity and availability of medical isotopes, commonly referred to as radiometals. For nuclear medicine to reach its true potential and change patient lives, novel production and purification techniques that increase inventory of radiometals are desperately needed. This tutorial review serves as a resource for those both new and experienced in nuclear medicine by providing a detailed explanation of the foundations for the production and purification of radiometals, stemming from nuclear physics, analytical chemistry, and so many other fields, all in one document. The fundamental science behind targetry, particle accelerators, nuclear reactors, nuclear reactions, and radiochemical separation are presented in the context of the field. Finally, a summary of the latest breakthroughs and a critical discussion of the threats and future potential of the most utilized radiometals is also included. With greater understanding of the fundamentals, fellow scientists will be able to better interpret the literature, identify knowledge gaps or problems and ultimately invent new production and purification pathways to increase the global availability of medical isotopes.
Collapse
Affiliation(s)
- Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
2
|
Randhawa P, Stienstra CMK, Chen S, Gao Y, Schreckenbach G, Radchenko V, Ramogida CF. Development of thiacrown ligands for encapsulation of mercury-197m/g into radiopharmaceuticals. Dalton Trans 2024. [PMID: 39440884 DOI: 10.1039/d4dt02427c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The theranostic pair mercury-197m and mercury-197g (197m/gHg, t1/2 = 23.8 h/64.14 h), through their γ rays and Meitner-Auger electron emissions, have potential use as constituents in radiopharmaceuticals to treat small metastatic tumours. However, the use of this pair of nuclear isomers in radiopharmaceuticals requires the development of suitable [197m/gHg]Hg2+ chelators as currently there is a lack of established ligands for radiometals in the field. Herein, this work studies the natHg/197m/gHg coordination of three thiacrown 18-membered N2S4 macrocycles with pendant arms of varying chemical "softness". Following the synthesis and characterization of the N2S4 ligand series (6,6'-((1,4,10,13-tetrathia-7,16-diazacyclooctadecane-7,16-diyl)bis(methylene))dipicolinic acid (N2S4-Pa), 7,16-bis(pyridin-2-ylmethyl)-1,4,10,13-tetrathia-7,16-diazacyclooctadecane (N2S4-Py) and 7,16-bis(2-(methylthio)ethyl)-1,4,10,13-tetrathia-7,16-diazacyclooctadecane (N2S4-Thio)), Hg2+ complexes were studied through mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy, and density functional theory (DFT) calculations, revealing successful complexation of all ligands with the Hg2+ ion. Radiolabeling studies demonstrated the effect of the pendant arm on [197m/gHg]Hg2+ coordination, as N2S4-Thio and N2S4-Py had the highest radiochemical yield, similar to that of previously reported N-benzyl-2-(1,4,7,10-tetrathia-13-azacyclopentadecan-13-yl)acetamide (NS4-BA), while N2S4-Pa had the lowest. The complex integrity of [197m/gHg][Hg(N2S4-Py)]2+ and [197m/gHg][Hg(N2S4-Thio)]2+ in both human serum and glutathione was notably lower compared to the [197m/gHg][Hg(NS4-BA)]2+ complex. However, the [197m/gHg][Hg(N2S4-Py)]2+ and [197m/gHg][Hg(N2S4-Thio)]2+ complexes remained above 70% intact over 82 h when competed against biologically relevant metals (ZnCl2, FeCl3, CuCl2, MgCl2 and CoCl2), suggesting the selectivity of the ligands for Hg2+. This study illustrates the importance of the macrocyclic backbone size and electron-donor groups of the donor pendant arms in the design of chelators for 197m/gHg-radiopharmaceuticals, as both affect the radiolabeling properties and complex inertness.
Collapse
Affiliation(s)
- Parmissa Randhawa
- Department of Chemistry, Simon Fraser University, Canada.
- Life Sciences Division, TRIUMF, Canada
| | | | - Shaohuang Chen
- Department of Chemistry, Simon Fraser University, Canada.
- Life Sciences Division, TRIUMF, Canada
| | - Yang Gao
- Department of Chemistry, University of Manitoba, Canada
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, China
| | | | - Valery Radchenko
- Life Sciences Division, TRIUMF, Canada
- Department of Chemistry, University of British Columbia, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Canada.
- Life Sciences Division, TRIUMF, Canada
| |
Collapse
|
3
|
Tosato M, Randhawa P, Asti M, Hemmingsen LBS, O'Shea CA, Thaveenrasingam P, Sauer SPA, Chen S, Graiff C, Menegazzo I, Baron M, Radchenko V, Ramogida CF, Di Marco V. Capturing Mercury-197m/g for Auger Electron Therapy and Cancer Theranostic with Sulfur-Containing Cyclen-Based Macrocycles. Inorg Chem 2024; 63:14241-14255. [PMID: 39024562 DOI: 10.1021/acs.inorgchem.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The interest in mercury radioisotopes, 197mHg (t1/2 = 23.8 h) and 197gHg (t1/2 = 64.14 h), has recently been reignited by the dual diagnostic and therapeutic nature of their nuclear decays. These isotopes emit γ-rays suitable for single photon emission computed tomography imaging and Auger electrons which can be exploited for treating small and metastatic tumors. However, the clinical utilization of 197m/gHg radionuclides is obstructed by the lack of chelators capable of securely binding them to tumor-seeking vectors. This work aims to address this challenge by investigating a series of chemically tailored macrocyclic platforms with sulfur-containing side arms, namely, 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), and 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S). 1,4,7,10-Tetrazacyclododecane-1,4,7,10-tetracetic acid (DOTA), the widest explored chelator in nuclear medicine, and the nonfunctionalized backbone 1,4,7,10-tetrazacyclododecane (cyclen) were considered as well to shed light on the role of the sulfanyl arms in the metal coordination. To this purpose, a comprehensive experimental and theoretical study encompassing aqueous coordination chemistry investigations through potentiometry, nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations, as well as concentration- and temperature-dependent [197m/gHg]Hg2+ radiolabeling and in vitro stability assays in human serum was conducted. The obtained results reveal that the investigated chelators rapidly complex Hg2+ in aqueous media, forming extremely thermodynamically stable 1:1 metal-to-ligand complexes with superior stabilities compared to those of DOTA or cyclen. These complexes exhibited 6- to 8-fold coordination environments, with donors statically bound to the metal center, as evidenced by the presence of 1H-199Hg spin-spin coupling via NMR. A similar octacoordinated environment was also found for DOTA in both solution and solid state, but in this case, multiple slowly exchanging conformers were detected at ambient temperature. The sulfur-rich ligands quantitatively incorporate cyclotron-produced [197m/gHg]Hg2+ under relatively mild reaction conditions (pH = 7 and T = 50 °C), with the resulting radioactive complexes exhibiting decent stability in human serum (up to 75% after 24 h). By developing viable chelators and understanding the impact of structural modifications, our research addresses the scarcity of suitable chelating agents for 197m/gHg, offering promise for its future in vivo application as a theranostic Auger-emitter radiometal.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Department of Chemistry, Simon Fraser University, BC V5A 0A7 Burnaby, British Columbia, Canada
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Parmissa Randhawa
- Department of Chemistry, Simon Fraser University, BC V5A 0A7 Burnaby, British Columbia, Canada
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Lars B S Hemmingsen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Catriona Ann O'Shea
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Shaohuang Chen
- Department of Chemistry, Simon Fraser University, BC V5A 0A7 Burnaby, British Columbia, Canada
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada
| | - Claudia Graiff
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Ileana Menegazzo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Baron
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, BC V6T 1Z1 Vancouver, British Columbia, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, BC V5A 0A7 Burnaby, British Columbia, Canada
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
4
|
Randhawa P, Carbo-Bague I, Davey PRWJ, Chen S, Merkens H, Uribe CF, Zhang C, Tosato M, Bénard F, Radchenko V, Ramogida CF. Exploration of commercial cyclen-based chelators for mercury-197 m/g incorporation into theranostic radiopharmaceuticals. Front Chem 2024; 12:1292566. [PMID: 38389726 PMCID: PMC10881723 DOI: 10.3389/fchem.2024.1292566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
A comprehensive investigation of the Hg2+ coordination chemistry and 197m/gHg radiolabeling capabilities of cyclen-based commercial chelators, namely, DOTA and DOTAM (aka TCMC), along with their bifunctional counterparts, p-SCN-Bn-DOTA and p-SCN-Bn-TCMC, was conducted to assess the suitability of these frameworks as bifunctional chelators for the 197m/gHg2+ theranostic pair. Radiolabeling studies revealed that TCMC and DOTA exhibited low radiochemical yields (0%-6%), even when subjected to harsh conditions (80°C) and high ligand concentrations (10-4 M). In contrast, p-SCN-Bn-TCMC and p-SCN-Bn-DOTA demonstrated significantly higher 197m/gHg radiochemical yields (100% ± 0.0% and 70.9% ± 1.1%, respectively) under the same conditions. The [197 m/gHg]Hg-p-SCN-Bn-TCMC complex was kinetically inert when challenged against human serum and glutathione. To understand the differences in labeling between the commercial chelators and their bifunctional counterparts, non-radioactive natHg2+ complexes were assessed using NMR spectroscopy and DFT calculations. The NMR spectra of Hg-TCMC and Hg-p-SCN-Bn-TCMC suggested binding of the Hg2+ ion through the cyclen backbone framework. DFT studies indicated that binding of the Hg2+ ion within the backbone forms a thermodynamically stable product. However, competition can form between isothiocyanate binding and binding through the macrocycle, which was experimentally observed. The isothiocyanate bound coordination product was dominant at the radiochemical scale as, in comparison, the macrocycle bound product was seen at the NMR scale, agreeing with the DFT result. Furthermore, a bioconjugate of TCMC (TCMC-PSMA) targeting prostate-specific membrane antigen was synthesized and radiolabeled, resulting in an apparent molar activity of 0.089 MBq/nmol. However, the complex demonstrated significant degradation over 24 h when exposed to human serum and glutathione. Subsequently, cell binding assays were conducted, revealing a Ki value ranging from 19.0 to 19.6 nM. This research provides crucial insight into the effectiveness of current commercial chelators in the context of 197m/gHg2+ radiolabeling. It underscores the necessity for the development of specific and customized chelators to these unique "soft" radiometals to advance 197m/gHg2+ radiopharmaceuticals.
Collapse
Affiliation(s)
- Parmissa Randhawa
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Imma Carbo-Bague
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Patrick R W J Davey
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Shaohuang Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Carlos F Uribe
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marianna Tosato
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
5
|
Pavoor Veedu A, Kuppusamy S, Mohan AM, Deivasigamani P. Chromogenic probe adhered porous polymer monolith as real-time solid-state sensor for the detection of ultra-trace toxic mercury ions. ENVIRONMENTAL RESEARCH 2023; 239:117399. [PMID: 37838196 DOI: 10.1016/j.envres.2023.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The escalating predicament of water pollution has spurred the development of new chromogenic materials for the efficient detection/screening of toxic mercuric (Hg2+) ions. In this study, we report a simple and efficient detection stratagem by infusing a chromogenic ion-receptor (BTDA), i.e., 4-(benzothiazol-2-yl)-N, N-dimethylaniline onto a structurally intertwined meso-/macro-pore polymer template for the target-specific sensing of ultra-trace Hg2+. The structural/surface features of the monolithic polymer template, prepared from glycidyl methacrylate (GMA) monomer crosslinked with ethylene glycol dimethacrylate (EGDMA), facilitate voluminous infusion and uniform decoration of ion-receptor molecules across the continuous porous poly(GMA-co-EGDMA) framework, resulting in a solid-state colorimetric sensory system. The bimodal polymer network's intriguing surface and structural morphology of the chromogenic sensor material are interpreted using scanning/transmission electron microscopy, X-ray diffraction, photoelectron spectroscopy, energy dispersive X-ray spectrometry, optical spectroscopy, surface area, porosity and thermal analysis. The proposed Hg2+ sensor offers a linear response range of 1-150 μg/L, with a detection and quantification limit of 0.29 and 0.97 μg/L, respectively. The poly(GMA-co-EGDMA)-BTDA sensor exhibits a quick ion-sensing response (40 s) with distinct color transitions from pastel yellow to olive as a function of increasing Hg2+ concentration. The matrix tolerance studies for the proposed sensory system reveal high selectivity for Hg2+, with a recovery of ≥99.2% in on-site environmental samples. The sensor material exhibits excellent data reproducibility and reliability up to seven cycles of reusability.
Collapse
Affiliation(s)
- Anju Pavoor Veedu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satheesh Kuppusamy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Hou Y, Lu J, Li M, Wei Q, Fan Y, Wang Y. A new desorption method of polyurethane foam for the determination of gold and a comparative study on four desorption methods based on meta-analysis. RSC Adv 2023; 13:12355-12360. [PMID: 37091597 PMCID: PMC10116147 DOI: 10.1039/d3ra00118k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
Accurate determination of gold in geological samples is an important prerequisite and guarantee for studying geological problems. There are many methods for digestion and enrichment of gold among which polyurethane foam (PUF) enrichment after aqua regia digestion is the most commonly used in the experiments. A new method to help the relief of gold from the PUF was put forward in this study, and it was applied to four certified reference materials (CRMs) together with three previously used methods, and the optimal extraction and enrichment conditions were determined through experiments. The four methods were compared by meta-analysis, and the thiourea liberation method was superior to the other three methods because of its simple operation and high accuracy. Out of consideration for the incomplete adsorption of gold in the solution by only one piece of PUF, repetitive adsorption of gold with a second and a third piece of PUF in the solution was proposed in this study. Results show that the gold content obtained by secondary and tertiary adsorption accounts for 11.03% of the total content, and the highest can reach 20.74%. When the third adsorption was carried out, the gold content in several samples was below the detection limit. Therefore, repeated adsorption of gold in the solution is necessary, and three times of adsorption is necessary.
Collapse
Affiliation(s)
- Yaru Hou
- College of Geo-exploration Science and Technology, Jilin University Changchun 130026 People's Republic of China
| | - Jilong Lu
- College of Geo-exploration Science and Technology, Jilin University Changchun 130026 People's Republic of China
| | - Mao Li
- The Second Hospital of Jilin University Changchun 130041 People's Republic of China
| | - Qiaoqiao Wei
- College of Geo-exploration Science and Technology, Jilin University Changchun 130026 People's Republic of China
| | - Yuchao Fan
- College of Geo-exploration Science and Technology, Jilin University Changchun 130026 People's Republic of China
| | - Yongzhi Wang
- College of Geo-exploration Science and Technology, Jilin University Changchun 130026 People's Republic of China
| |
Collapse
|
7
|
Randhawa P, Gower-Fry KL, Stienstra CMK, Tosato M, Chen S, Gao Y, McDonagh AW, Di Marco V, Radchenko V, Schreckenbach G, Ramogida CF. Selective Chelation of the Exotic Meitner-Auger Emitter Mercury-197 m/g with Sulfur-Rich Macrocyclic Ligands: Towards the Future of Theranostic Radiopharmaceuticals. Chemistry 2023; 29:e202203815. [PMID: 36701527 DOI: 10.1002/chem.202203815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
Mercury-197 m/g are a promising pair of radioactive isomers for incorporation into a theranostic as they can be used as a diagnostic agent using SPECT imaging and a therapeutic via Meitner-Auger electron emissions. However, the current absence of ligands able to stably coordinate 197m/g Hg to a tumour-targeting vector precludes their use in vivo. To address this, we report herein a series of sulfur-rich chelators capable of incorporating 197m/g Hg into a radiopharmaceutical. 1,4,7,10-Tetrathia-13-azacyclopentadecane (NS4 ) and its derivatives, (2-(1,4,7,10-tetrathia-13-azacyclopentadecan-13-yl)acetic acid (NS4 -CA) and N-benzyl-2-(1,4,7,10-tetrathia-13-azacyclopentadecan-13-yl)acetamide (NS4 -BA), were designed, synthesized and analyzed for their ability to coordinate Hg2+ through a combination of theoretical (DFT) and experimental coordination chemistry studies (NMR and mass spectrometry) as well as 197m/g Hg radiolabeling studies and in vitro stability assays. The development of stable ligands for 197m/g Hg reported herein is extremely impactful as it would enable their use for in vivo imaging and therapy, leading to personalized treatments for cancer.
Collapse
Affiliation(s)
- Parmissa Randhawa
- Department of Chemistry, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, British Columbia, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, V6T 2A3, Vancouver, British Columbia, Canada
| | - K Lexi Gower-Fry
- Department of Chemistry, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, British Columbia, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, V6T 2A3, Vancouver, British Columbia, Canada
| | - Cailum M K Stienstra
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, V6T 2A3, Vancouver, British Columbia, Canada
| | - Marianna Tosato
- Department of Chemistry, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, British Columbia, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, V6T 2A3, Vancouver, British Columbia, Canada.,Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Shaohuang Chen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, British Columbia, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, V6T 2A3, Vancouver, British Columbia, Canada
| | - Yang Gao
- Department of Chemistry, University of Manitoba, 140 Dysart Rd, R3T 2N2, Winnipeg, Manitoba, Canada.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, P. R. China
| | - Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, British Columbia, Canada
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, V6T 2A3, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, British Columbia, Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, 140 Dysart Rd, R3T 2N2, Winnipeg, Manitoba, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, British Columbia, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, V6T 2A3, Vancouver, British Columbia, Canada
| |
Collapse
|