1
|
Ishii T, Hirai K, Higashi K, Aijima A, Yokota N, Toida T, Iwasaki Y, Ito R, Higashi N, Akiyama H. Novel simultaneous analysis of 18 types of glycosaminoglycan-derived disaccharides using 4-aminobenzoic acid ethyl ester derivatization by HPLC with fluorescence detection. Anal Bioanal Chem 2024; 416:6209-6221. [PMID: 39212700 DOI: 10.1007/s00216-024-05504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Glycosaminoglycans (GAGs), including hyaluronic acid (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), heparan sulfate (HS)/heparin (HP), and keratan sulfate (KS), play pivotal roles in living organisms. Generally, GAGs are analyzed after enzymatic digestion into unsaturated or saturated disaccharides. Due to high structural similarity between disaccharides, however, separation during analysis is challenging. Additionally, little is known about the structures of GAGs and their functional relationships. Elucidating the function of GAGs requires highly sensitive quantitative analytical methods. We developed a method for the simultaneous analysis of 18 types of disaccharides derived from HA (1 type), CS/DS (7 types), HS/HP (8 types), and KS (2 types) potentially detectable in analyses of human urine. The simple method involves HPLC separation with fluorescence detection following derivatization of GAG-derived disaccharides using 4-aminobenzoic acid ethyl ester (ABEE) as a pre-labeling agent and 2-picoline borane as a reductant. The ABEE derivatization reaction can be performed under aqueous conditions, and excess derivatization reagents can be easily, rapidly, and safely removed. This method enables highly sensitive simultaneous analysis of the 18 abovementioned types of GAG-derived disaccharides using HPLC with fluorescence detection in small amounts of urine (1 mL) in a single run. The versatile method described here could be applied to the analysis of GAGs in other biological samples.
Collapse
Affiliation(s)
- Takamasa Ishii
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kengo Hirai
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kyohei Higashi
- Department of Clinical and Analytical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayaka Aijima
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Nae Yokota
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Toshihiko Toida
- The Center for Preventive Medical Sciences, Chiba University, 1-8-1, Inohana, Chiba-Shi, Chiba, 260-8675, Japan
| | - Yusuke Iwasaki
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Rie Ito
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Nobuaki Higashi
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Hiroshi Akiyama
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-9501, Japan.
| |
Collapse
|
2
|
Pathak A, Verma N, Tripathi S, Mishra A, Poluri KM. Nanosensor based approaches for quantitative detection of heparin. Talanta 2024; 273:125873. [PMID: 38460425 DOI: 10.1016/j.talanta.2024.125873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Heparin, being a widely employed anticoagulant in numerus clinical complications, requires strict quantification and qualitative screening to ensure the safety of patients from potential threat of thrombocytopenia. However, the intricacy of heparin's chemical structures and low abundance hinders the precise monitoring of its level and quality in clinical settings. Conventional laboratory assays have limitations in sensitivity and specificity, necessitating the development of innovative approaches. In this context, nanosensors emerged as a promising solution due to enhanced sensitivity, selectivity, and ability to detect heparin even at low concentrations. This review delves into a range of sensing approaches including colorimetric, fluorometric, surface-enhanced Raman spectroscopy, and electrochemical techniques using different types of nanomaterials, thus providing insights of its principles, capabilities, and limitations. Moreover, integration of smart-phone with nanosensors for point of care diagnostics has also been explored. Additionally, recent advances in nanopore technologies, artificial intelligence (AI) and machine learning (ML) have been discussed offering specificity against contaminants present in heparin to ensure its quality. By consolidating current knowledge and highlighting the potential of nanosensors, this review aims to contribute to the advancement of efficient, reliable, and economical heparin detection methods providing improved patient care.
Collapse
Affiliation(s)
- Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nishchay Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|