1
|
Volpatto F, Vitali L. Development of a new method using dispersive liquid-liquid microextraction with hydrophobic natural deep eutectic solvent for the analysis of multiclass emerging contaminants in surface water by liquid chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1032-1046. [PMID: 39775300 DOI: 10.1039/d4ay02012j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (1H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples. Vortex was used as the dispersion mode, eliminating the use of the dispersion solvent. Chromatographic conditions and sample preparation were optimized using multivariate experimental designs. The optimized chromatographic conditions included the column oven temperature, mobile phase modifiers, and stationary phase type. The optimized conditions for sample preparation included the extraction temperature and pH, salting out effect, and extraction solvent volume. The analytical performance was evaluated through repeatability and intermediate precision tests, with RSD values below 20%, and recoveries between 70 and 120%. The coefficient of determination was greater than 0.98 for all analytes. LOQs varied between 1.5 and 35 μg L-1. DLLME is a simple technique, it does not require expensive and specific equipment. Furthermore, replacing traditional chlorinated solvents with NADES makes the procedure more environmentally friendly. The method presented here can be applied to a wide range of analytes for the analysis of fresh, brackish, and salt waters. Up to the present moment, this is the first study using NADES based thymol and butyric acid for the determination of multiclass emerging contaminants in surface waters samples.
Collapse
Affiliation(s)
- Fernanda Volpatto
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88035-972, Brazil.
| | - Luciano Vitali
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88035-972, Brazil.
| |
Collapse
|
2
|
Fesliyan S, Maslov MM, Sanaullah, Altunay N, Kaya S. Investigation of magnetic ionic liquids for selective and rapid extraction of gallic acid from complex samples using experimental, statistical modeling and density functional theory studies. Food Chem 2024; 460:140516. [PMID: 39083963 DOI: 10.1016/j.foodchem.2024.140516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
Given the high antioxidant capacity of gallic acid (GA), there is a great deal of interest in the development of rapid, selective, simple, and easily accessible analytical methods for its determination from complex samples. Consequently, the present study aimed to develop an ultrasonic assisted magnetic ionic liquid-based dispersive liquid microextraction (UA-MIL-DLLME) method for the extraction of GA from various samples prior to its spectrophotometric detection. The method's key variables were optimized through statistical analysis. Four magnetic liquids (MILs) were prepared and tested to extract the GA-Se complex formed in aqueous solution. Both experimental studies and theoretical calculations demonstrated that the most suitable MIL for the phase separation of the relevant complex is [P6,6,6,14][Mn(hfacac)3]. The developed UA-MIL-DLLME method exhibited a wide linear range (5-400 ng mL-1), a remarkable enhancement factor (133), and a low limit of detection (1.6 ng mL-1). Additionally, high extraction recovery (97 ± 1%) with a low relative standard deviation (1.9%) was achieved. The extraction time for the UA-MIL-DLLME method was 8 min. The precision of the method was evaluated through repeatability and reproducibility studies. Finally, the UA-MIL-DLLME method was successfully applied to the extraction of the GA from complex samples using a reference method.
Collapse
Affiliation(s)
- Seçkin Fesliyan
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mikhail M Maslov
- Nanoengineering in Electronics, Spintronics and Photonics Institute, National Research Nuclear University "MEPhI", Kashirskoe Shosse 31, Moscow 115409, Russia
| | - Sanaullah
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Nail Altunay
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Savaş Kaya
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
3
|
Liu J, Nie Y, Niu Y, Li L, Jing X. Lignin-based emulsive liquid-liquid microextraction for detecting triazole fungicides in water, juice, vinegar, and alcoholic beverages via UHPLC-MS/MS. Food Chem 2024; 459:140407. [PMID: 39018619 DOI: 10.1016/j.foodchem.2024.140407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
A universal, green, and rapid lignin-based emulsive liquid-liquid microextraction (ELLME) method was established to detect nine triazole fungicides in water, juice, vinegar, and alcoholic beverages via UHPLC-MS/MS. By employing an environmentally friendly emulsifier (lignin), the proposed ELLME was compatible with more extractants, and not restricted to fatty acids. Due to the high amphiphilic properties and three-dimensional structure of lignin, the emulsion was quickly formed through several aspirate-dispense cycles of the green extractant (guaiacol) and lignin solution. And a micropipette was used for rapid microextraction. The limit of detection was 0.0002-0.0057 μg L-1. The extraction recoveries and relative standard deviation were 81.7%-102.0% and 0.9%-7.1%, respectively. Finally, three green metric tools were used to verify the greenness of the whole procedure. The proposed lignin-based ELLME successfully emulsified green solvents, indicating that emerging solvents may be excellent alternatives as extractants in ELLME for pesticide residue analysis in food samples.
Collapse
Affiliation(s)
- Jin Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China
| | - Yuanjun Nie
- Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Yu Niu
- Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
4
|
Hanzl L, Vinklárek J, Litecká M, Rebei M, Beneš H, Eisner A, Mikysek T, Krejčová A, Honzíček J. Vanadium-Containing Ionic Liquids Derived from Complexes of Modified Edta as Catalysts of Epoxy-Anhydride Ring-Opening Copolymerization. Inorg Chem 2024; 63:16631-16644. [PMID: 39205399 PMCID: PMC11388465 DOI: 10.1021/acs.inorgchem.4c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new type of vanadium-containing ionic liquids (ILs) was synthesized by cation exchange from barium salts of oxidovanadium(IV) complexes stabilized by edta and its congeners (dcta, oedta, and heedta) serving as pentadentate ligands. All starting barium salts and several magnesium and cesium salts, serving as models for the cation exchange, were structurally characterized by single-crystal XRD analysis. The synthesized ILs consisting of organic cations (Bu4N+, Bmim+, and Bu4P+) and complex anions ([VO(edta)]2-, [VO(dcta)]2-, [VO(oedta)]-, and [VO(heedta)]-) were characterized by analytical and spectroscopic methods including EPR spectroscopy and cyclic voltammetry. Then, ILs were tested as catalysts for the ring-opening copolymerization of epoxy resin with cyclic anhydride showing significant catalytic activity, which led to production of highly cross-linked glassy thermosets. A detailed isothermal DSC kinetic study was performed for the most promising IL showing that the progress of cross-linking can be successfully fitted by the Kamal-Sourour model. Based on the DSC and NIR results, the initiation mechanism of the cross-linking in the presence of vanadium-containing IL was suggested. IL had ability to activate a rapid hydrolysis of anhydride cycle and the formed carboxyl groups initiated a polyesterification. In parallel, the role of imidazolium cation of IL for the initiation of chain-growth anionic copolymerization is also discussed.
Collapse
Affiliation(s)
- Lukáš Hanzl
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Jaromír Vinklárek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Miroslava Litecká
- Department of Materials Chemistry, Institute of Inorganic Chemistry of the CAS, Husinec-R̆ež 1001, R̆ež 25068, Czech Republic
| | - Marwa Rebei
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 00, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 00, Czech Republic
| | - Aleš Eisner
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Tomáš Mikysek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Anna Krejčová
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Jan Honzíček
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| |
Collapse
|
5
|
Figueiredo NM, Voroshylova IV, Ferreira ESC, Marques JMC, Cordeiro MNS. Magnetic Ionic Liquids: Current Achievements and Future Perspectives with a Focus on Computational Approaches. Chem Rev 2024; 124:3392-3415. [PMID: 38466339 PMCID: PMC10979404 DOI: 10.1021/acs.chemrev.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.
Collapse
Affiliation(s)
- Nádia M. Figueiredo
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Iuliia V. Voroshylova
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Elisabete S. C. Ferreira
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Jorge M. C. Marques
- CQC−IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M. Natália
D. S. Cordeiro
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Liu N, Wang N, Yang T, Zhou X, Chai Q, Liu G, Cui B. Preparation and application of an imidazolium-based poly (ionic liquid) functionalized silica sorbent for solid-phase extraction of parabens from food samples. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123888. [PMID: 37716344 DOI: 10.1016/j.jchromb.2023.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
In this work, an imidazolium-based poly (ionic liquid) (poly(1-octyl-3-vinyl- imidazolium naphthalene sulfonate)) functionalized silica (poly(C8VIm+NapSO3-) @SiO2) was successfully prepared for the determination of parabens in food samples. The prepared poly(C8VIm+NapSO3-)@SiO2 was characterized by Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectrogram (XPS) and Scanning electron microscopy (SEM). The simulation calculation results indicated that the suitable binding energies were between the polymeric ionic liquids and parabens, and the main interactions for extraction were hydrogen bonding, electrostatic and π-π stacking interactions. In addition, compared with commercial extraction materials, the prepared poly(C8VIm+NapSO3-)@SiO2 sorbent showed comparable or even better extraction performance towards parabens. The effective parameters were optimized by a combination of the univariate method and Box-Behnken design (BBD). Under the optimum conditions, coupled with high performance liquid chromatography (HPLC), wide linear ranges (1.0-800 μg L-1), good linearity (R2 ≥ 0.9997) and low limits of detection (0.1 μg L-1) were obtained. In addition, the intra-day and inter-day relative standard deviations (RSDs) were all lower than 6.3%. Moreover, the proposed method was successfully used for the determination of parabens in food samples and satisfactory recoveries in the range of 76.9-97.4% were obtained. The results indicated that the proposed method had good sensitivity, accuracy and precision for the detection of parabens in food samples.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ting Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xuesheng Zhou
- Key Laboratory of Transportation Industry for Transport Vehicle Detection, Diagnosis and Maintenance Technology, School of Automotive Engineering, ShanDong JiaoTong University, Jinan 250357, China
| | - Qingqing Chai
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guimei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
7
|
Abbasi N, De Silva S, Biswas A, Anderson JL. Ultra-Low Viscosity and High Magnetic Susceptibility Magnetic Ionic Liquids Featuring Functionalized Diglycolic Acid Ester Rare-Earth and Transition Metal Chelates. ACS OMEGA 2023; 8:27751-27760. [PMID: 37546640 PMCID: PMC10399152 DOI: 10.1021/acsomega.3c03938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Magnetic ionic liquids (MILs) comprise a subcategory of ionic liquids (ILs) and contain a paramagnetic metal center allowing them to be readily manipulated by an external magnetic field. While MILs are popularly employed as solvents in catalysis, separations, and organic synthesis, most low viscosity combinations possess a hydrophilic character that limits their use in aqueous matrices. To date, no study has reported the synthesis and characterization of hydrophobic MILs with viscosities similar to those of hydrophilic MILs and organic solvents while simultaneously exhibiting enhanced magnetic and thermal properties. In this study, diglycolic acid esters are employed as ligands to chelate with paramagnetic metals to produce cations that are paired with metal chelates composed of hexafluoroacetylacetonate ligands to form MILs incorporating multiple metal centers in the cation and anion. Viscosity values below 31.6 cP were obtained for these solvents, the lowest ever reported for hydrophobic MILs. Solubilities in nonpolar solvents such as benzene were observed to be as high as 50% (w/v) MIL-to-solvent ratio while being insoluble in water at concentrations as low as 0.01% (w/v). Effective paramagnetic moment values for these solvents ranged from 5.33 to 15.56 Bohr magnetons (μB), with mixed metal MILs containing multiple lanthanides in the anion generally offering higher magnetic susceptibilities. MILs composed of ligands containing octyl substituents were found to possess thermal stabilities up to 190 °C. The synthetic strategies explored in this study exploit the highly tunable nature of the employed cation and anion pairs to design versatile ultra-low viscosity magnetoactive solvents that possess tremendous potential and applicability in liquid-liquid separation systems, catalysis, and microfluidics where the mechanical movement of the solvent can be easily facilitated using electromagnets.
Collapse
Affiliation(s)
| | - Shashini De Silva
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Anis Biswas
- Ames
National Laboratory—USDOE, Ames, Iowa 50011, United States
| | - Jared L. Anderson
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
8
|
Alqarni AM, Mostafa A, Shaaban H, Gomaa MS, Albashrayi D, Hasheeshi B, Bakhashwain N, Aseeri A, Alqarni A, Alamri AA, Alrofaidi MA. Development and optimization of natural deep eutectic solvent-based dispersive liquid-liquid microextraction coupled with UPLC-UV for simultaneous determination of parabens in personal care products: evaluation of the eco-friendliness level of the developed method. RSC Adv 2023; 13:13183-13194. [PMID: 37124025 PMCID: PMC10141287 DOI: 10.1039/d3ra00769c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
Dispersive liquid-liquid microextraction (DLLME) combined with ultra-high performance liquid chromatography-diode array detector (UHPLC-DAD) method has been developed and validated for the determination of parabens in personal care products. In this study, a natural deep eutectic solvent (NADES) composed of menthol and formic acid at a molar ratio of 1 : 2 was prepared and used as an extraction solvent. The influencing variables on the extraction efficiency such as extraction solvent type and volume, composition of NADES, salt addition, vortex and centrifugation time were investigated. The proposed method exhibited good linearity with determination coefficients of ≥0.9992. The relative recoveries for the studied analytes ranged from 82.19 to 102.45%. Limits of detection and limits of quantification were in the range of 0.17-0.33 ng mL-1 and 0.51-0.99 ng mL-1, respectively. To evaluate the applicability of the developed method, it was successfully applied to determine four parabens in personal care products. Additionally, the eco-friendliness level of the presented method was evaluated using Eco-Scale Assessment, Green Analytical Procedure Index and Analytical GREEnness metric. The developed method is simple, environmentally friendly and cost effective and it could be employed for determination of parabens in personal care products without harming the environment.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Ahmed Mostafa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Heba Shaaban
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Mohamed S Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Danyah Albashrayi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Batool Hasheeshi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Nujud Bakhashwain
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Atheer Aseeri
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Abdulaziz Alqarni
- Medical Laboratory Department, National Guard Health Affairs AlAhsa Saudi Arabia
| | - Abdulgani A Alamri
- Armed Forces Health Rehabilitation Center, Ministry of Defense for Health Services Taif Saudi Arabia
| | - Mohammad A Alrofaidi
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University King Faisal Road, P.O. Box 1988 Al-Baha Saudi Arabia
| |
Collapse
|