1
|
Roussis SG, Nguyen K, Rentel C. SEC x IP two-dimensional LCMS for the analysis of non-denatured and denatured cyclic-peptide siRNAs in a single step. J Chromatogr A 2025; 1740:465552. [PMID: 39631127 DOI: 10.1016/j.chroma.2024.465552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
The increased effectiveness of small interfering RNAs (siRNAs) to induce gene silencing has brought a great therapeutic promise to many diseases. siRNAs are under highly active current research and development. Ligand conjugation and chemical modifications of the sense (SS) and antisense (AS) strands of the siRNA duplex improve stability and facilitate delivery, but significantly increase the complexity of the analytical requirements. Two chromatographic methods are needed to guide synthesis and formulation: (1) a non-denaturing method to analyze the duplex, residual sense and antisense strands, their impurities, and those of the duplex, and (2) a denaturing method for each strand and its impurities. In this work, ion-pair reversed phase (IP-RP) and strong anion exchange (SAX) methods were not successful in the analysis of a cyclic-peptide (CP) siRNA, in the non-denaturing mode. Selection of the most appropriate chromatographic method is greatly challenged by the chemical properties of the conjugated ligands. However, separation was possible by size exclusion chromatography (SEC). The non-denaturing SEC method was implemented, using a 2D-LC system, in the 1D dimension of the analysis, coupled with a denaturing IP-RP method in the 2D dimension. The 2D-LC system greatly simplified the siRNA analysis by combining, for the first time, the non-denaturing and denaturing methods into a single-instrument, one sample injection method. An additional benefit of the 2D-LC system is the interfacing of MS-incompatible methods (e.g., SAX, SEC) to a mass spectrometer, broadening thus the analytical options, by coupling with MS-compatible methods (IP-RP, HILIC) in the 2D dimension. Application of the approach was exemplified in a CP-siRNA duplex formulation study to determine the optimal mixing ratio of the individual strands. A duplex maximum was reached at a sample solution AS:SS ratio of 0.9. The method was found to be independent of the amount and concentration of sample injected. A duplex annealing study found no significant temperature or salt effects in the formulation of the CP-siRNA duplex.
Collapse
|
2
|
Enmark M, Furlan I, Habibollahi P, Manz C, Fornstedt T, Samuelsson J, Örnskov E, Jora M. Expanding the Analytical Toolbox for the Nondenaturing Analysis of siRNAs with Salt-Mediated Ion-Pair Reversed-Phase Liquid Chromatography. Anal Chem 2024; 96:18590-18595. [PMID: 39527760 PMCID: PMC11603401 DOI: 10.1021/acs.analchem.4c05248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Short interfering RNA (siRNA) represents a rapidly expanding class of marketed oligonucleotide therapeutics. Due to its double-stranded nature, the characterization of siRNA is twofold: (i) at the single-strand (denaturing) level for impurity profiling and (ii) at the intact (nondenaturing) level to confirm duplex formation and quantify excess single strands (including single strand-derived impurities). While denaturing analysis can be carried out using conventional ion-pair reversed-phase liquid chromatography (IP-RPLC), nondenaturing characterization of siRNA is a significantly less straightforward task. Typical IP-RPLC conditions have an intrinsic denaturing effect on siRNA, thereby limiting the development of viable approaches for the intact duplex analysis. In this study, we demonstrate, through the design of experiments of siRNA melting temperatures and chromatography analyses, that the simple addition of salts, such as phosphate-buffered saline and ammonium acetate, to eluents enhances the suitability of IP-RPLC for the nondenaturing analysis of siRNA during both UV- and mass spectrometry-based analysis. This work represents a milestone in overcoming the challenges associated with nondenaturing analysis of siRNAs by IP-RPLC and offers a fresh angle for exploring IP-RPLC of siRNAs.
Collapse
Affiliation(s)
- Martin Enmark
- Department
of Engineering and Chemical Sciences, Karlstad
University, Karlstad 651 88, Sweden
| | - Ilaria Furlan
- Advanced
Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal 431 83, Sweden
| | - Porya Habibollahi
- Advanced
Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal 431 83, Sweden
| | - Christian Manz
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal 431 83, Sweden
| | - Torgny Fornstedt
- Department
of Engineering and Chemical Sciences, Karlstad
University, Karlstad 651 88, Sweden
| | - Jörgen Samuelsson
- Department
of Engineering and Chemical Sciences, Karlstad
University, Karlstad 651 88, Sweden
| | - Eivor Örnskov
- Advanced
Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal 431 83, Sweden
| | - Manasses Jora
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal 431 83, Sweden
| |
Collapse
|
3
|
Wei B, Wang J, Dai L, Zhang K. Probing the higher order structure of oligonucleotides through anion exchange chromatography. J Chromatogr A 2024; 1734:465314. [PMID: 39217735 DOI: 10.1016/j.chroma.2024.465314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Large synthetic oligonucleotides such as guide ribonucleic acid (gRNA), a critical reagent in clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing, have complex higher order structures (HOS) inherent in their design. In this study, we first developed a generic anion exchange chromatography (AEX) method for the comprehensive analysis of a 100mer single guide ribonucleic acid (sgRNA) impurity profiling. AEX demonstrated superior resolution compared to other common chromatographic methods employed for sgRNA analysis, such as Ion-Pairing Reversed Phase Liquid Chromatography (IP-RPLC) and Hydrophilic Interaction Chromatography (HILIC). Moreover, we discovered AEX's potential in probing the HOS of RNAs by adjusting the temperature and using organic additives. Our study also highlighted that sgRNA possesses a unique HOS distinctly different from other therapeutic nucleic acids, such as antisense oligonucleotides and messenger RNAs.
Collapse
Affiliation(s)
- Bingchuan Wei
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Jenny Wang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lulu Dai
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
4
|
Togawa H, Okubo T, Horiuchi K, Yamaguchi T, Tomita-Sudo E, Akita T, Kawakami J, Obika S. Separation of the diastereomers of phosphorothioated siRNAs by anion-exchange chromatography under non-denaturing conditions. J Chromatogr A 2024; 1721:464847. [PMID: 38552370 DOI: 10.1016/j.chroma.2024.464847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
In recent years, several small interfering RNA (siRNA) therapeutics have been approved, and most of them are phosphorothioate (PS)-modified for improving nuclease resistance. This chemical modification induces chirality in the phosphorus atom, leading to the formation of diastereomers. Recent studies have revealed that Sp and Rp configurations of PS modifications of siRNAs have different biological properties, such as nuclease resistance and RNA-induced silencing complex (RISC) loading. These results highlight the importance of determining diastereomeric distribution in quality control. Although various analytical approaches have been used to separate diastereomers (mainly single-stranded oligonucleotides), it becomes more difficult to separate all of them as the number of PS modifications increases. Despite siRNA exhibits efficacy in the double-stranded form, few reports have examined the separation of diastereomers in the double-stranded form. In this study, we investigated the applicability of non-denaturing anion-exchange chromatography (AEX) for the separation of PS-modified siRNA diastereomers. Separation of the four isomers of the two PS bonds tended to improve in the double-stranded form compared to the single-stranded form. In addition, the effects of the analytical conditions and PS-modified position on the separation were evaluated. Moreover, the elution order of the Sp and Rp configurations was confirmed, and the steric difference between them, i.e., the direction of the anionic sulfur atom, appeared to be important for the separation mechanism in non-denaturing AEX. Consequently, all 16 peak tops of the four PS modifications were detected in one sequence, and approximately 30 peak tops were detected out of 64 isomers of six PS bonds, indicating that non-denaturing AEX is a useful technique for the quality control of PS-modified siRNA therapeutics.
Collapse
Affiliation(s)
- Hiroyuki Togawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; CERI Hita, Chemicals Evaluation and Research Institute, Japan, 3-822 Ishii-machi, Hita, Oita 877-0061, Japan
| | - Takashi Okubo
- CERI Hita, Chemicals Evaluation and Research Institute, Japan, 3-822 Ishii-machi, Hita, Oita 877-0061, Japan
| | - Kazuki Horiuchi
- CERI Hita, Chemicals Evaluation and Research Institute, Japan, 3-822 Ishii-machi, Hita, Oita 877-0061, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Elisa Tomita-Sudo
- Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tomoka Akita
- Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Junji Kawakami
- Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Bui QD, Deschrijver T, Noten B, Verluyten W, Vervoort N, Eeltink S. Optimization of elution conditions and comparison of emerging biocompatible columns on the resolving power and detection sensitivity of oligonucleotides by ion-pairing reversed-phase liquid chromatography mass spectrometry. J Chromatogr A 2024; 1720:464793. [PMID: 38484639 DOI: 10.1016/j.chroma.2024.464793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
A generic performance comparison strategy has been developed to evaluate the impact of mobile-phase additives (ion-pairing agent / counter ion systems), distinct stationary phases on resulting resolving power, and MS detectability of oligonucleotides and their critical impurities in gradient IP-RPLC. Stationary-phase considerations included particle type (core-shell vs. fully porous particles), particle diameter, and pore size. Separations were carried out at 60°C to optimize mass transfer (C-term). The incorporation of an active column preheater mitigated thermal mismatches, leading to narrower peaks and overcoming peak splitting. Acetonitrile as organic modifier outweighed methanol in terms of peak-capacity generation and yielded a 30% lower back pressure. Performance screening experiments were conducted varying ion-pairing agents and counter ions, while adjusting gradient span achieved an equivalent effective retention window. Hexafluoromethylisopropanol yielded superior chromatographic resolution, whereas hexafluoroisopropanol yielded significantly higher MS detection sensitivity. The 1.7 µm core-shell particle columns with 100 Å pores provided maximum resolving power for small (15-35 mers) oligonucleotides. Sub-min analysis for 15-35 polyT ladders was achieved operating a 50 mm long column at the kinetic performance limits. High-resolution separations between a 21-mer modified RNA sequence oligonucleotides and its related (shortmer and phosphodiester) impurities and complementary strand were obtained using a coupled column set-up with a total length of 450 mm.
Collapse
Affiliation(s)
- Quang-Dong Bui
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium
| | - Tiny Deschrijver
- Janssen Pharmaceutica, Process Analytical Research - Chemical Process Research and Development, Beerse, Belgium
| | - Bart Noten
- Janssen Pharmaceutica, Process Analytical Research - Chemical Process Research and Development, Beerse, Belgium
| | - Willy Verluyten
- Janssen Pharmaceutica, Analytical Development, Beerse, Belgium
| | - Nico Vervoort
- Janssen Pharmaceutica, Process Analytical Research - Chemical Process Research and Development, Beerse, Belgium
| | - Sebastiaan Eeltink
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium.
| |
Collapse
|
6
|
Ozaki M, Kuwayama T, Shimotsuma M, Hirose T. Separation and purification of short-, medium-, and long-stranded RNAs by RP-HPLC using different mobile phases and C 18 columns with various pore sizes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1948-1956. [PMID: 38445900 DOI: 10.1039/d4ay00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Nucleic acids, which have been employed in medicines for various diseases, are attracting attention as a new pharmaceutical model. Depending on the target substances, nucleic acid medicines with various nucleic acid chain lengths (several tens of nucleotides [nt] to several thousands of nt) exist. The purification of synthesized nucleic acids is crucial as various impurities remain in the crude product after synthesis. Presently, reversed-phase high-performance liquid chromatography (RP-HPLC) represents an effective purification method for nucleic acids. However, the information regarding the HPLC conditions for separating and purifying nucleic acids of various chain lengths is insufficient. Thus, this technical note describes the separation and purification of short-, medium-, and long-stranded nucleic acids (several tens of nt to thousands of nt) by RP-HPLC with various mobile phases and octadecyl-based columns with various pore sizes, such as normal (9-12 nm), wide (30 nm), and super wide (>30 nm) pores.
Collapse
Affiliation(s)
- Makoto Ozaki
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Tomomi Kuwayama
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Motoshi Shimotsuma
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Tsunehisa Hirose
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| |
Collapse
|