1
|
Ma L, Li Y, Shang L, Ma Y, Sun Y, Ji W. Preparation of two amphiphilic dendritic small molecule gelators based on poly (aryl ether) modified silica-based chromatographic stationary phases and molecular shape recognition for shape-restricted isomers. J Chromatogr A 2024; 1733:465249. [PMID: 39178658 DOI: 10.1016/j.chroma.2024.465249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Geometric isomers tend to have similar polarities and differ only in molecular shape. Vigorously developing new stationary phases to meet the requirements for the separation of isomers that have similar physicochemical properties is still an urgent topic in separation science. Poly (arylene ether)-based dendrimers are known for their multifunctional branched peripheral structures and high self-assembly properties. In this paper, two amphiphilic dendritic organic small molecule gelling agents based on poly (aryl ether), PAE-ANT and PAE-PA, were prepared and conjugated to the silica surface. SiO2@PAE-ANT and SiO2@PAE-PA were used as HPLC stationary phases for the separation of non-polar shape-restricted isomers. Both stationary phases have very high molecular shape selectivity for isomers such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), tocopherols and carotenoids. Separation of cis-trans geometric isomers such as diethylstilbestrol and polar compounds such as monosubstituted benzenes and anilines can also be achieved. These two columns offer more flexible selectivity and higher separation performance than commercial C18 and phenyl columns. There is a difference in molecular shape selectivity between the two stationary phases for the same analyte test probes. SiO2@PAE-ANT showed slightly better linear selectivity for non-polar shape-restricted isomers compared to SiO2@PAE-PA with Janus-type PAE-PA bonding phase. This separation behavior may be attributed to the ordered spatial structure formed by the gel factor on the surface of the stationary phase and the combined effect of multiple weak interaction centers (hydrophobic, hydrophilic, hydrogen bonding and π-π interactions). It was also possible to separate nucleoside and nucleobase strongly polar compounds well in the HILIC mode, suggesting that hydrophilic groups in PAE-ANT and PAE-PA are involved in the interactions, reflecting their amphiphilic nature. The results show that the ordered gelation of dendritic organic small molecule gelators on the SiO2 surface, along with multiple carbonyl-π, π-π and other interactions, play a crucial role in the separating shape-restricted isomers. The integrated and ordered functional groups serve as the primary driving force behind the exceptionally high molecular shape selectivity of SiO2@PAE-ANT and SiO2@PAE-PA phases. Alterations in the structure of dendritic organic small molecule gelators can impact both molecular orientation and recognition ability, while changes in the type of functional groups influences the separation mechanism of shape-restricted isomers.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuanyuan Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Le Shang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yonggang Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
2
|
Xia Y, Wang L, Liu Y, Liu J, Bai Q. One-pot fabrication and evaluation of β-ketoenamine covalent organic frameworks@silica composite microspheres as reversed-phase/hydrophilic interaction mixed-mode stationary phase for high performance liquid chromatography. J Chromatogr A 2024; 1728:464998. [PMID: 38795423 DOI: 10.1016/j.chroma.2024.464998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Covalent organic frameworks (COFs) show promise as a stationary phase in high performance liquid chromatography (HPLC). However, there are only a few COFs-based stationary phases developed for HPLC separation so far. Therefore, it is crucial to not only develop more varieties of COFs-type stationary phases for HPLC separation, but also to explore the retention mechanism of solutes on these stationary phases. In this paper, a new in-situ growth method was developed to prepare β-ketoenamine COF-TpPa-1@SiO2 composite microspheres, using spherical silica as the core material and COF-TpPa-1 fabricated by covalent conjugation of 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa-1) as the COF shells. The resulting microspheres exhibit uniform morphology, good monodispersity, large specific surface area, narrow size distribution, and high stability. Due to diverse functional groups in the structure of COF-TpPa-1, the microspheres can offer multiple interactions, such as hydrophobic, π-π stacking and electron-donor-acceptor (EDA) between COFs and analytes. As a result, the COF-TpPa-1@SiO2 composite microspheres can be used as a mixed-mode stationary phase for HPLC separation. The chromatographic performance and retention mechanism of the COF-TpPa-1@SiO2 packed column were investigated by separating polar and non-polar solutes, as well as isomers, in various HPLC modes, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction chromatography (HILIC), and RPLC/HILIC mixed-mode chromatography. The results showed successful separation of non-polar alkylbenzene homologues, polycyclic aromatic hydrocarbons (PAHs), and polar amines and phenols in RPLC mode. The "U-shaped" curves of retention factor with the ACN concentration in mobile phase for four nucleobases indicated that the solute retention on the column followed a mixed mode mechanism of RPLC/HILIC. Compared to a traditional C18 column, the COF-TpPa-1@SiO2 column exhibited superior separation efficiency, stability, repeatability and reproducibility in the separation of analytes with different polarities. The column enhanced the aromatic, shape and planar selectivity for PAHs and isomers through π-π interaction and improved the separation efficiency for electron-deficient compounds due to EDA effect. At last, the column was successfully used to separate and detect the residues of 5 phenylurea herbicides (PUHs) in soil. All these results indicate the potential of COFs for chromatography applications.
Collapse
Affiliation(s)
- Yiran Xia
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institue of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an 710127, China
| | - Lushuai Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institue of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an 710127, China
| | - Yang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institue of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an 710127, China
| | - Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institue of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an 710127, China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institue of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
3
|
Ge D, Yang J, Yu Z, Lu J, Chen Y, Jin Y, Ke Y, Fu Q, Liang X. Synthesis and evaluation of aromatic stationary phases based on linear solvation energy relationship model for expanded application in supercritical fluid chromatography. J Chromatogr A 2024; 1716:464640. [PMID: 38219626 DOI: 10.1016/j.chroma.2024.464640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
In the last decade, the separation application based on aromatic stationary phases has been demonstrated in supercritical fluid chromatography (SFC). In this paper, four aromatic stationary phases involving aniline (S-aniline), 1-aminonaphthalene (S-1-ami-naph), 1-aminoanthracene (S-1-ami-anth) and 1-aminopyrene (S-1-ami-py) were synthesized based on full porous particles (FPP) silica, which were not end-capped for providing extra electrostatic interaction. Retention mechanism of these phases in SFC was investigated using a linear solvation energy relationship (LSER) model. The aromatic stationary phases with five positive parameters (a, b, s, e and d+) can provide hydrogen bonding, π-π, dipole-dipole and cation exchange interactions, which belong to the moderate polar phases. The LSER results obtained using routine test solutes demonstrated that the aforementioned interactions of four aromatic stationary phases were influenced by the type and bonding density of the ligand, but to a certain extent. Furthermore, the LSER data verified that the S-1-ami-anth column based on full porous particles silica had higher cation exchange capacity (d+ value), compared to the commercialized 1-AA column (based on the ethylene-bridged hybrid particles). The relationship between the d+ value and SFC additive was quantitatively proved so as to regulate electrostatic interaction reasonably. This value was greatly increased by phosphoric acid, slightly increased by trifluoroacetic acid and formic acid, but significantly reduced by ammonium formate and diethylamine. Taking the S-1-ami-naph column as an example, better peek shape of the flavonoids was obtained after the addition of 0.1 % phosphoric acid in MeOH while isoquinoline alkaloids were eluted successfully within 11 min after adding 0.1 % diethylamine in MeOH. Combined with the unique π-π interaction and controllable electrostatic interaction, the aromatic stationary phases in this study have been proven to have expandable application potential in SFC separation.
Collapse
Affiliation(s)
- Dandan Ge
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jie Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zimo Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiahao Lu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanchun Chen
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China; Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| |
Collapse
|
4
|
Ye J, Du J, Wang B, Yan Y, Ding CF. Identification and quantification of bipyridyl dicarboxylic acid isomers by ion mobility spectrometry. J Chromatogr A 2024; 1715:464630. [PMID: 38184990 DOI: 10.1016/j.chroma.2024.464630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The identification of positional isomers is of interest because different isomers have different chemical or biological functions and applications. The analysis of positional isomers is sometimes challenging since they have similar chemical structures and properties. For example, the analysis of mass cannot identify different positional isomers because they have identical mass-to-charge ratios and show a single mass peak in mass spectrometry. In this study, an efficient and simple qualitative and quantitative analytical method for differentiating 2,2'-bipyridine-3,3'-dicarboxylic acid (3,3'-BDA), 2,2'-bipyridine-4,4'-dicarboxylic acid (4,4'-BDA), and 2,2'-bipyridine-5,5'-dicarboxylic acid (5,5'-BDA) was developed by using ion mobility spectrometry (IMS). The results revealed that the three BDA isomers formed non-covalent complexes with cyclodextrins (CDs) and Mg2+ ions in the gas phase: [β-CD+3,3'/4,4'/5,5'-BDA+Mg]2+ and [γ-CD+3,3'/4,4'/5,5'-BDA+Mg]2+, which were distinguished by measuring the mobility of the complexes because of their spatial conformational differences. The peak-to-peak resolution (Rp-p) values of the three isomers of [γ-CD+3,3'/4,4'/5,5'-BDA+Mg]2+ reached 2.983 and 2.892, respectively. The conformations of the ternary complexes simulated by the theoretical calculations revealed the different interactions and shapes of the stereoisomers, and the predicted results agreed with the experimental results. Simultaneously, further studies on the collisional dissociation of the ternary complexes revealed that the dissociation energies of the different complex ions varied were different owing to the diverse different conformations. Finally, the relative quantitative analysis of the different isomers in mixed samples was performed and satisfactory linearity results (R2 > 0.99) were obtained. Thus, an effective analytical method was proposed for the identification and quantification of BDA isomers without chemical derivatization, offering a promising approach for the identification of similar derivatives or positional isomers that could be applied in various fields including chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jiacheng Ye
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianglong Du
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|