1
|
Deng K, Guo H, Li X, Li T, Di T, Ma R, Lei D, Zhang Y, Wang J, Kong W. Two swords combination: Smartphone-assisted ratiometric fluorescent and paper sensors for dual-mode detection of glyphosate in edible malt. Food Chem 2024; 454:139744. [PMID: 38797096 DOI: 10.1016/j.foodchem.2024.139744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
The long-term and excessive use of glyphosate (GLY) in diverse matrices has caused serious hazard to the human and environment. However, the ultrasensitive detection of GLY still remains challenging. In this study, the smartphone-assisted dual-signal mode ratiometric fluorescent and paper sensors based on the red-emissive gold nanoclusters (R-AuNCs) and blue-emissive carbon dots (B-CDs) were ingeniously designed accurate and sensitive detection of GLY. Upon the presence of GLY, it would quench the fluorescence of B-CDs through dynamic quenching effect, and strengthen the fluorescence response of R-AuNCs due to aggregation-induced enhancement effect. Through calculating the GLY-induced fluorescence intensity ratio of B-CDs to R-AuNCs by using a fluorescence spectrophotometer, low to 0.218 μg/mL of GLY could be detected in lab in a wide concentration range of 0.3-12 μg/mL with high recovery of 94.7-103.1% in the spiked malt samples. The smartphone-assisted ratiometric fluorescent sensor achieved in the 96-well plate could monitor 0-11 μg/mL of GLY with satisfactory recovery of 94.1-107.0% in real edible malt matrices for high-throughput analysis. In addition, a portable smartphone-assisted ratiometric paper sensor established through directly depositing the combined B-CDs/R-AuNCs probes on the test strip could realize on-site measurement of 2-8 μg/mL of GLY with good linear relationship. This study provides new insights into developing the dual-signal ratiometric sensing platforms for the in-lab sensitive detection, high-throughput analysis, and on-site portable measurement of more trace contaminants in foods, clinical and environmental samples.
Collapse
Affiliation(s)
- Kai Deng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Haipeng Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueying Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Te Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Runran Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Doudou Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Lakavath K, Kafley C, Sajeevan A, Jana S, Marty JL, Kotagiri YG. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins (Basel) 2024; 16:244. [PMID: 38922139 PMCID: PMC11209398 DOI: 10.3390/toxins16060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as vegetables, fruits, food, and beverage products. Currently, screening of these toxins is mostly performed with sophisticated instrumentation such as chromatography and spectroscopy techniques. However, these techniques are very expensive and require extensive maintenance, and their availability is limited to metro cities only. Alternatively, electrochemical biomimetic sensing methodologies have progressed hugely during the last decade due to their unique advantages like point-of-care sensing, miniaturized instrumentations, and mobile/personalized monitoring systems. Specifically, affinity-based sensing strategies including immunosensors, aptasensors, and molecular imprinted polymers offer tremendous sensitivity, selectivity, and stability to the sensing system. The current review discusses the principal mechanisms and the recent developments in affinity-based sensing methodologies for the detection and continuous monitoring of mycotoxins and pesticides. The core discussion has mainly focused on the fabrication protocols, advantages, and disadvantages of affinity-based sensing systems and different exploited electrochemical transduction techniques.
Collapse
Affiliation(s)
- Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Chandan Kafley
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Soumyajit Jana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| |
Collapse
|
3
|
Yuan Y, Wang Y, Zhang Y, Yin J, Han Y, Han D, Yan H. Miniaturized centrifugation accelerated pipette-tip matrix solid-phase dispersion based on poly(deep eutectic solvents) surface imprinted graphene oxide composite adsorbent for rapid extraction of anti-adipogenesis markers from Solidago decurrens Lour. J Chromatogr A 2024; 1715:464599. [PMID: 38150874 DOI: 10.1016/j.chroma.2023.464599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Overweight and obesity are the causes of many diseases and have become global "epidemics". Research on natural active components with anti-adipogenesis effects in plants has aroused the interest of researchers. One of the most critical problems is establishing sample preparation and analytical techniques for quickly and selectively extracting and determining the active anti-adipogenesis components in complex plant matrices for developing new anti-adipogenic drugs. In this study, a new poly(deep eutectic solvents) surface imprinted graphene oxide composite (PDESs-MIP/GO) with high selectivity for phenolic acids was prepared using deep eutectic solvents as monomers and crosslinkers. A miniaturized centrifugation-accelerated pipette-tip matrix solid-phase dispersion method (CPT-MSPD) with PDESs-MIP/GO as adsorbent, coupled with high-performance liquid chromatography, was further developed for the rapid determination of anti-adipogenesis markers in Solidago decurrens Lour. (SDL). The established method was successfully used to determination anti-adipogenesis markers in SDL from different regions, with the advantages of accuracy (recoveries: 94.4 - 115.9 %, RSDs ≤ 9.8 %), speed (CPT-MSPD time: 11 min), selectivity (imprinting factor: ∼2.0), and economy (2 mg of adsorbent and 1 mL of solvents), which is in line with the current advanced principle of "3S+2A" in analytical chemistry.
Collapse
Affiliation(s)
- Yanan Yuan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Life Science, College of Pharmaceutical Science, Hebei University, Baoding 071002, China; Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding, 071002, China
| | - Yibo Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Life Science, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Yanfei Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Life Science, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yehong Han
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Life Science, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Dandan Han
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding, 071002, China
| | - Hongyuan Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Life Science, College of Pharmaceutical Science, Hebei University, Baoding 071002, China; Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding, 071002, China.
| |
Collapse
|