1
|
Liu Q, Wei W, Liu Y, Zhang Y, Chen W, Tang S. Deep eutectic supramolecular polymers based HPLC stationary phase: Green synthesis strategy and promising application prospects. Anal Chim Acta 2024; 1330:343268. [PMID: 39489951 DOI: 10.1016/j.aca.2024.343268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Deep eutectic solvents (DESs) have been widely and significantly applied in various fields due to their outstanding features such as low cost, easy preparation and good biodegradability. As novel derivatives of DESs, deep eutectic supramolecular polymers (DESPs) combine the macroscopic state of DESs with the covalent interactions of supramolecular polymers, which also possess the properties of DESs as multifunctional materials. Therefore, DESPs are believed to be promising candidates for separation science. However, there are no studies on the application of DESPs as stationary phases for HPLC analysis. RESULTS In this work, a novel DESP based HPLC stationary phase (Poly(DES)@SiO2) was developed for the first time through a green synthesis method by using DES as the polymerization monomer as well as the reaction medium. The results manifest that this novel Poly(DES)@SiO2 column can well interact with analytes through various mechanisms, and realize selective separation of a wide range of structurally similar hydrophilic/hydrophobic substances. More importantly, the separation of hydrophobic analytes on the Poly(DES)@SiO2 column is less time-consuming with fewer organic eluent, although the column efficiency is slightly lower than that of commercial C18 column. Furthermore, the Poly(DES)@SiO2 column exhibits excellent mechanical stability and satisfactory separation repeatability for steroid hormones. Therefore, a reliable method was established for detecting steroid hormones in actual samples with the recoveries ranging from 94.56 % to 103.84 %, which can meet the detection needs of commonly seen steroid hormones in food and the environment. SIGNIFICANCE In summary, this work provides some valuable theoretical references for the synthesis of new DESP based stationary phases through a green and facile strategy, and meanwhile, verifies the feasibility of DESP for effective HPLC separations. In addition, the promising application prospect of DESP based stationary phases in the analysis of complex samples has also been demonstrated, expanding the potential application of DES in separation science.
Collapse
Affiliation(s)
- Qiaoling Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wanjiao Wei
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanjuan Liu
- College of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Liu N, Xiao C, Duan W, Wang N, Cui B. Preparation of an imidazolium-based poly(ionic liquid) functionalized magnetic three-dimensional graphene oxide for magnetic solid phase extraction of pyrethroids from tea samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124321. [PMID: 39303518 DOI: 10.1016/j.jchromb.2024.124321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
In this work, an imidazolium-based poly(ionic liquid) (poly(1-dodecyl-3-vinyl-imidazolium bromide) functionalized magnetic three-dimensional graphene oxide (Fe3O4@3D-GO@poly(ImC12+Br-)) was synthesized via a vacuum freezing-drying method and used as a magnetic solid phase extraction (MSPE) adsorbent for the efficient extraction of pyrethroid pesticides from tea samples. The prepared Fe3O4@3D-GO@poly(ImC12+Br-) was confirmed by scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and X-ray photoelectron spectrogram (XPS). Due to its large specific surface area and the ability to offer multiple intermolecular interactions, including π-π stacking, hydrophobic and hydrogen bond interactions, the prepared Fe3O4@3D-GO@poly(ImC12+Br-) showed high extraction efficiency for pyrethroids. The experimental parameters were optimized by a combination of single-factor method and Box-Behnken design to improve the extraction efficiency. Under the optimum conditions, coupled with high performance liquid chromatography (HPLC), a sensitive analytical method was developed for the determination of pyrethroids, and the proposed method showed wide linear ranges (1.00-100 μg L-1) with correlation coefficients (R) ranging from 0.9980 to 0.9994, low limits of detection (0.100 μg L-1) and good repeatability with intra-day relative standard deviations (RSDs) in the range of 2.90-5.53 % and inter-day RSDs in the range of 1.83-7.76 %. Moreover, the developed method was successfully applied to the determination of pyrethroids in tea samples and satisfactory recoveries ranging from 82.37 % to 114.34 % were obtained. The results showed that the developed Fe3O4@3D-GO@poly(ImC12+Br-) was an ideal, effective and selective material for the extraction and enrichment of pyrethroids from tea samples.
Collapse
Affiliation(s)
- Na Liu
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chuhao Xiao
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weixin Duan
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Wang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Bo Cui
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
3
|
Lu T, Li H, Rao H, Sun K, Liu X, Zhao L. Propanediamine modified pillar[5]arene: A novel stationary phase for the high selectivity separation of versatile analytes. J Chromatogr A 2024; 1730:465134. [PMID: 38959655 DOI: 10.1016/j.chroma.2024.465134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The unique properties of pillar[5]arene, including hydrophobic cavities, π-π conjugated and easy modification, make it a promising candidate as stationary phase for HPLC. Herein, we fabricated a novel propanediamine modified pillar[5]arene bonded silica as the stationary phase (PDA-BP5S) for reversed-phase liquid chromatography (RPLC). Benefiting from the significant hydrophobicity, π-π conjugative, p-π effect, and hydrogen bonding, the PDA-BP5S packed column showed high separation performance of versatile analytes involving polycyclic aromatic hydrocarbons, alkyl benzenes, phenols, arylamine, phenylethane/styrene/ phenylacetylene, toluene/m-xylene/mesitylene, halobenzenes, benzenediol and nitrophenol isomers. Especially, the separation of halobenzenes appeared to be controlled by both the size of the halogen substituents and the strength of the noncovalent bonding interactions, which was further confirmed by molecular dynamics simulation. The satisfactory separation and repeatability revealed the promising prospects of amine-pillar[5]arene-based stationary phase for RPLC.
Collapse
Affiliation(s)
- Taotao Lu
- School of Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China.
| | - Hui Li
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Honghong Rao
- School of Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China
| | - Kanjun Sun
- School of Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China
| | - Xianyu Liu
- School of Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China
| | - Liang Zhao
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Liu Y, Zhao L, Liu Y, Zhang Y, Chen W, Tang S. Surface molecularly imprinted polymer/covalent organic framework/silica composite material with specific recognition ability and excellent chromatographic performance. Talanta 2024; 276:126238. [PMID: 38761655 DOI: 10.1016/j.talanta.2024.126238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Facing with the difficulty of specific chromatographic separation of nucleoside drugs, this study prepared a surface molecularly imprinted polymer (SMIP) modified covalent organic framework (COF) coated silica stationary phase based on the specificity of molecular imprinting technology and the powerful chromatographic separation performance of COF. This novel SMIP-COF@SiO2 stationary phase can not only specifically identify template molecule and structural analogs, but can also be used to separate multiple types of analytes, such as B vitamins, sulfonamides, alkylbenzenes, phenyl ketones, polycyclic aromatic hydrocarbons and environmental endocrine disruptors, which satisfies the need for complex sample separation. Various retention mechanisms have been investigated and multiple interactions between the SMIP-COF@SiO2 stationary phase and the analytes are discovered. The chromatographic performance of SMIP-COF@SiO2 is far superior to that of the SMIP@SiO2 and COF@SiO2. Furthermore, the SMIP-COF@SiO2 stationary phase can be successfully used to analyze polycyclic aromatic hydrocarbons in the environmental water sample and detect whitening ingredient in skincare product, indicating its great potential for application in various fields.
Collapse
Affiliation(s)
- Yuanfei Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan, 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan, 430205, China
| | - Yanjuan Liu
- School of Pharmacy, Linyi University, Shuangling Road, Linyi, 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan, 430205, China.
| |
Collapse
|
5
|
Akuoko SY, Kwon KS. Fabrication and Applications of Nature-Inspired Surfaces with Selective Wettability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15969-15995. [PMID: 39046090 DOI: 10.1021/acs.langmuir.4c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inspired by the Stenocora beetle, selective wettability surfaces incorporate alternating wettable and nonwettable surface features that have received substantial attention over the past two decades. These surfaces are sought after for their very promising potential to drive progress in numerous application fields, including ecological protection, biomedical sciences, and industrial technologies. However, despite ongoing efforts to produce such surfaces in commercial quantities, understanding their basic fabrication concepts for practical applications can be challenging, especially for novices, given the vast technical literature in this area. This review, therefore, aims to elucidate the principles of wettability, along with the evolution of selective wettability surfaces and their uses. Beginning with a summary of the essential history and theory of wetting, we explore naturally occurring surfaces that have influenced wetting studies. We then detail state-of-the-art methods for fabricating these unique biwetting surfaces and show how contemporary science employs such designs in solving real-world problems. Finally, we offer an outlook for future research prospects on scalable, printing-based fabrication methods.
Collapse
Affiliation(s)
- Stephen Yaw Akuoko
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan, Chungnam 31538, South Korea
| | - Kye-Si Kwon
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan, Chungnam 31538, South Korea
- Department of Mechanical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan, Chungnam 31538, South Korea
| |
Collapse
|
6
|
Okechukwu VO, Kappo AP, Njobeh PB, Mamo MA. Morphed aflaxotin concentration produced by Aspergillus flavus strain VKMN22 on maize grains inoculated on agar culture. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100197. [PMID: 38468716 PMCID: PMC10925925 DOI: 10.1016/j.fochms.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
This study identified and monitored the levels of aflatoxins (B1 and B2) produced by Aspergillus flavus isolate VKMN22 (OP355447) in maize samples sourced from a local shop in Johannesburg, South Africa. Maize samples underwent controlled incubation after initial rinsing, and isolates were identified through morphological and molecular methods. In another experiment, autoclaved maize grains were intentionally re-inoculated with the identified fungal isolate using spore suspension (106 spore/mL), after which 1 g of the contaminated maize sample was inoculated on PDA media and cultured for seven days. The aflatoxin concentrations in the A. flavus contaminated maize inoculated on culture media was monitored over seven weeks and then measured using liquid chromatography-mass spectroscopy (LC-MS). Results confirmed the successful isolation of A. flavus strain VKMN22 with accession number OP355447, which consistently produced higher levels of AFB1 compared to AFB2. AF concentrations increased from week one to five, then declined in week six and seven. AFB1 levels ranged from 594.3 to 9295.33 µg/kg (week 1-5) and then reduced from 5719.67 to 2005 µg/kg in week six and seven), while AFB2 levels ranged from 4.92 to 901.67 µg/kg (weeks 1-5) and then degraded to 184 µg/kg in week six then 55.33 µg/kg (weeks 6-7). Levene's tests confirmed significantly higher mean concentrations of AFB1 compared to AFB2 (p ≤ 0.005). The study emphasizes the importance of consistent biomonitoring for a dynamic understanding of AF contamination, informing accurate prevention and control strategies in agricultural commodities thereby safeguarding food safety.
Collapse
Affiliation(s)
- Viola O. Okechukwu
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Abidemi P. Kappo
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Patrick B. Njobeh
- Department of Food and Biotechnology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Messai A. Mamo
- Department of Chemical Sciences, PO Box 2028, Doornfontein Campus, University of Johannesburg, South Africa
| |
Collapse
|
7
|
Wei W, Zhao L, Si T, Zhang Y, Chen W, Tang S. Green synthesis of N-rich carbon dot-derived crosslinked covalent organic nanomaterial for multipurpose chromatographic applications. Mikrochim Acta 2024; 191:345. [PMID: 38802617 DOI: 10.1007/s00604-024-06435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Carbon dots (CDs) derived crosslinked covalent organic nanomaterials (CONs) possessing high specific surface area and abundant surface functional groups are considered to be potential candidates for multimodal chromatographic separations. Typically, the synthesis of CDs and CONs requires harsh reaction conditions and toxic organic solvents, hence, the pursuit of facile and mild preparation strategies is the goal of researchers. In this work, 3-aminopropyltriethoxysilane and D-glucose were used as nitrogen and carbon sources, respectively, to prepare amino-CDs (AmCDs) by rapid low-temperature polymerization rather than the common high-temperature and high-pressure reaction. Then, surface functionalization of the aminated silica gel was carried out in a deep eutectic solvent by using hydrophilic AmCDs and 1,3,5-triformylbenzene (TFB) as the functional monomers. Consequently, a novel N-rich CDs derived CON surface-functionalized silica gel (AmCDs-CON@SiO2) was obtained under mild reaction conditions. The combination of AmCDs and TFB created an ideal CON based chromatographic stationary phase. The incorporation of TFB not only contributed to the successful construction of a crosslinked CON, but also enhanced the interaction forces. The developed AmCDs-CON@SiO2 has a great potential for versatile applications in liquid chromatography. This study proposes a simple stationary phase preparation strategy by the surface modification of silica gel with CDs-based CON. Moreover, this study verified the application potential of CDs derived CON in chromatographic separation. This not only promotes the development of CDs in the field of liquid chromatographic stationary phase, but also provides some reference value for the wide application of cross-linked CON.
Collapse
Affiliation(s)
- Wanjiao Wei
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tiantian Si
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
8
|
Liu Q, Zhou K, Liu Y, Zhang Y, Chen W, Tang S. Exploring the potential applications of amphiphilic carbon dots based nanocomposite hydrogel in liquid chromatographic separations. Anal Chim Acta 2024; 1299:342445. [PMID: 38499423 DOI: 10.1016/j.aca.2024.342445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Due to their excellent stability, low toxicity, flexible modification and adjustable functionality, carbon dots (CDs) have a promising application prospect in the field of chromatographic stationary phases. Hydrogels are new functional polymer materials with three-dimensional network structure that have excellent hydrophilicity, high porosity and unique mechanical properties, which are also good candidate materials for liquid chromatography. Nevertheless, a review of the literature reveals that CDs based nanocomposite hydrogels have not yet been reported as HPLC stationary phases. RESULTS In this work, amphiphilic CDs with multiple functional groups and polyacrylic acid hydrogel were grafted to the surface of silica gel by an in-situ polymerization method, and a CDs/polyacrylic acid nanocomposite hydrogel stationary phase (CDs/hydrogel@SiO2) was prepared. CDs act as the macroscopic cross-linking agents to form a cross-linked network with polyacrylic acid chains through physical cross-linking by hydrogen bonding and chemical cross-linking by amidation and esterification reactions, which not only improve the swelling property of the hydrogel but also increase its stability. Additionally, the introduction of CDs with multifunctional groups modulates the hydrophilic-hydrophobic balance of the hydrogel that also imparts good hydrophobicity to the composite hydrogel. Through the study of retention mechanism and influencing factors, it is certificate that the CDs/hydrogel@SiO2 has mixed-mode chromatographic performance. Furthermore, the CDs/hydrogel@SiO2 column shows great potential for the determination of organic contaminants in environmental water samples. SIGNIFICANCE This work confirms the potential application of CDs/hydrogel composite for the separation of various samples and provides the possibility of developing CDs based nanocomposite hydrogel in the field of liquid chromatography. Introducing CDs into hydrogel can open up a new way for nanocomposite hydrogels to be used in HPLC, which expands the advance of hydrogel and CDs in separation field.
Collapse
Affiliation(s)
- Qiaoling Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Kunming Zhou
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanjuan Liu
- School of Pharmacy, Linyi University, Shuangling Road, Linyi 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
9
|
Yang Y, Chen J, Liang X, Liu B, Quan K, Liu X, Qiu H. Adjustable chromatographic performance of silica-based mixed-mode stationary phase through the control of co-grafting amounts of imidazole and C18 chain. J Chromatogr A 2024; 1722:464889. [PMID: 38598894 DOI: 10.1016/j.chroma.2024.464889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
In this paper, three imidazole- and C18- bifunctional silica stationary phases (Sil-Im-C18) were prepared by adjusting introduction interval of octadecyltrichlorosilane (ODS) and 3-imidazol-1-ylpropyl(trimethoxy)silane (TMPImS), which can be used for reversed-phase liquid chromatography (RPLC) and ion exchange chromatography (IEC) with adjustable performance. The successful preparation of Sil-Im-C18 were confirmed by the characterizations of elemental analysis, infrared spectroscopy (FTIR) and contact angle (CA). Chromatographic performance of Sil-Im-C18 were evaluated by the separation of Tanaka test mixture, alkylbenzenes, linear PAHs and a set of analytes with different properties (uracil, phenol, 1,2-dinitrobenzene and naphthalene), and compared with commonly used C18 column. It was found that the chromatographic performance of Sil-Im-C18 changed significantly with the difference in bonding amount of imidazole and C18. Sil-Im-C18 demonstrated the excellent separation performance towards polycyclic aromatic hydrocarbons (PAHs), phenylesters, phenylamines, phenols and inorganic anions, and notably, nucleobases and nucleosides can be separated using pure water as mobile phases. The van Deemter plot showed that the column efficiency of Sil-Im-C18-3 was 64,933 plate·m-1 for naphthalene, indicated that Sil-Im-C18 was reasonably chromatographic columns. The RSD values of retention time were 0.22 %-0.61 % for 10 needles alkylbenzenes injected continuously at 50 °C to investigate thermal stability and repeatability, all the fluctuations of k of naphthalene were less than 2.3 % for Sil-Im-C18-1 during flushing 24 h with the mobile phase at different pH values (pH = 3 and 8), the retention time of alkylbenzenes were almost same for Sil-Im-C18-1 at different time, the RSD values of retention time of alkylbenzenes were 0.45 %-2.28 % for two batches Sil-Im-C18-1, revealing the excellent repeatability, thermal stability, durability and reproducibility of Sil-Im-C18, and implying a commercial prospect.
Collapse
Affiliation(s)
- Yali Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China.
| |
Collapse
|
10
|
Zhao Q, Zhao L, Zhang Y, Chen W, Tang S. Design of smart temperature-sensitive terpolymeric hydrogel for multi-applications in liquid chromatography. J Chromatogr A 2024; 1722:464867. [PMID: 38598895 DOI: 10.1016/j.chroma.2024.464867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Hydrogels with a unique three-dimensional network structure have been widely used in a variety of fields. However, hydrogels are prone to swelling under water-rich conditions, which severely limits their application in liquid chromatography. Therefore, producing a hydrogel with reliable performance and good mechanical property is essential. Smart temperature-sensitive chromatographic packings have attracted extensive attentions in recent years. In this work, sodium 4-styrenesulfonate and 1-octadecene were introduced into the poly(N-isopropylacrylamide) hydrogel to improve mechanical property and separation performance. As a consequence, a smart temperature-sensitive terpolymeric hydrogel modified silica stationary phase (ION-hydrogel@SiO2) was synthesized for multimode liquid chromatographic separation. It was found that this new ION-hydrogel@SiO2 column exhibited excellent chromatographic separation ability for a wide range of analytes. To a certain extent, this new column has a higher chromatographic separation efficiency compared to the commercial C18 column and XAmide column. Moreover, the use of low proportion of organic phase in chromatographic separation is conducive to the realization of green chromatography. By investigating the chromatographic separation mechanism, it has been demonstrated that the hydrogen bonding interaction is primarily responsible for the temperature-sensitive behavior of the hydrogel. Finally, the ION-hydrogel@SiO2 column was used for the determination of pyridoxine in the commercially available tablet samples. In conclusion, this study presents a feasible idea for the development of novel copolymer hydrogels as liquid chromatographic stationary phases.
Collapse
Affiliation(s)
- Qian Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
11
|
Luo K, Gao Y, Zhang Y, Chen W, Tang S. Chitosan/polyacrylic acid/octadecene double-crosslinked network hydrogel functionalized porous silica microspheres for multimode liquid chromatographic separation. J Chromatogr A 2023; 1709:464390. [PMID: 37741220 DOI: 10.1016/j.chroma.2023.464390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
In this study, chitosan (CS) and polyacrylic acid (PAA) were used to construct a double-crosslinked network hydrogel, which was employed as the functional material for silica microspheres to prepare a CS/PAA hydrogel modified liquid chromatographic stationary phase. During preparation, octadecene (ODE) was introduced into the CS/PAA hydrogel to improve its hydrophobicity and separation ability. The electrostatic interaction between the amino group of CS and the carboxyl group of PAA effectively prevented the swelling of the CS/PAA hydrogel, which ensured the successful application of the obtained CS/PAA hydrogel@SiO2 in chromatographic analysis. Polar nucleosides/bases and B-vitamins were selectively separated using hydrophilic interaction liquid chromatography. Hydrophobic polycyclic aromatic hydrocarbons and alkylphenols were effectively separated through reversed-phase liquid chromatography. Moreover, the effective separation of aromatic positional isomers and chiral enantiomers was achieved. This study confirms the potential application of the CS/PAA hydrogel in chromatographic separation. What is noteworthy is that the method developed in this study also provides a feasible strategy to solve the swelling issue associated with the hydrogel-based liquid chromatographic stationary phase.
Collapse
Affiliation(s)
- Kaixing Luo
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yaya Gao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
12
|
Liu N, Wang N, Yang T, Zhou X, Chai Q, Liu G, Cui B. Preparation and application of an imidazolium-based poly (ionic liquid) functionalized silica sorbent for solid-phase extraction of parabens from food samples. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123888. [PMID: 37716344 DOI: 10.1016/j.jchromb.2023.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
In this work, an imidazolium-based poly (ionic liquid) (poly(1-octyl-3-vinyl- imidazolium naphthalene sulfonate)) functionalized silica (poly(C8VIm+NapSO3-) @SiO2) was successfully prepared for the determination of parabens in food samples. The prepared poly(C8VIm+NapSO3-)@SiO2 was characterized by Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectrogram (XPS) and Scanning electron microscopy (SEM). The simulation calculation results indicated that the suitable binding energies were between the polymeric ionic liquids and parabens, and the main interactions for extraction were hydrogen bonding, electrostatic and π-π stacking interactions. In addition, compared with commercial extraction materials, the prepared poly(C8VIm+NapSO3-)@SiO2 sorbent showed comparable or even better extraction performance towards parabens. The effective parameters were optimized by a combination of the univariate method and Box-Behnken design (BBD). Under the optimum conditions, coupled with high performance liquid chromatography (HPLC), wide linear ranges (1.0-800 μg L-1), good linearity (R2 ≥ 0.9997) and low limits of detection (0.1 μg L-1) were obtained. In addition, the intra-day and inter-day relative standard deviations (RSDs) were all lower than 6.3%. Moreover, the proposed method was successfully used for the determination of parabens in food samples and satisfactory recoveries in the range of 76.9-97.4% were obtained. The results indicated that the proposed method had good sensitivity, accuracy and precision for the detection of parabens in food samples.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ting Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xuesheng Zhou
- Key Laboratory of Transportation Industry for Transport Vehicle Detection, Diagnosis and Maintenance Technology, School of Automotive Engineering, ShanDong JiaoTong University, Jinan 250357, China
| | - Qingqing Chai
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guimei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|