1
|
Cui X, Liu P, Huang X, Yu Y, Qin X, Zhou H, Zheng Q, Liu Y. Enhancing coverage of annotated compounds in traditional Chinese medicine formulas: Integrating MS E and Fast-DDA molecular network with AntDAS-Case study of Xiao Jian Zhong Tang. J Chromatogr A 2024; 1738:465498. [PMID: 39504707 DOI: 10.1016/j.chroma.2024.465498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The chemical characterisation of traditional Chinese medicine formulas (TCMFs) using mass spectrometry poses notable challenges owing to their complex and diverse chemical compositions. While acquisition modes such as data-dependent acquisition (DDA) and data-independent acquisition (DIA) offer new insights, DDA's tendency to overlook low-abundance ions and DIA's complicated data processing, particularly in matching MS1 and MS2 information, limit the effective annotation of valuable compounds in TCMFs. Herein, we present a new integrated strategy to enhance the coverage of annotated compounds in TCMFs, using Xiao Jian Zhong Tang (XJZ) as a case study. First, we characterised the components of XJZ through UNIFI software in Fast-DDA and DIA modes. We then summarised the diagnostic ions and substituent information of the identified compounds based on the Fast-DDA data, integrating molecular networks and AntDAS to predict unknown components and uncover potential components. Ultimately, we characterised a total of 785 components in XJZ, including 43 that were unique to XJZ when compared to the individual herbs involved. The presence of these new components may result from the recombination of substituents during compatibility. In conclusion, this new integrated strategy facilitates more in-depth characterisation of components in TCMFs, providing a new direction for exploring the compatibility principles among TCMFs.
Collapse
Affiliation(s)
- Xiaojing Cui
- Zhengzhou Tobacco Research Institute of CNTC, Henan Zhengzhou 450001, PR China; Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Henan Zhengzhou 450001, PR China
| | - Xingyue Huang
- Zhengzhou Tobacco Research Institute of CNTC, Henan Zhengzhou 450001, PR China; Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China
| | - Yongjie Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of CNTC, Henan Zhengzhou 450001, PR China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Henan Zhengzhou 450001, PR China.
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| |
Collapse
|
2
|
Liao W, Wang P, He Y, Liu Z, Wang L. Investigation of the underlying mechanism of Buyang Huanwu decoction in ischemic stroke by integrating systems pharmacology-proteomics and in vivo experiments. Fitoterapia 2024; 175:105935. [PMID: 38580032 DOI: 10.1016/j.fitote.2024.105935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Buyang Huanwu Decoction (BHD) has been effective in treating ischemic stroke (IS). However, its mechanism of action remains unclear. The study intended to explore the potential mechanism of BHD against IS using systems pharmacology, proteomics, and animal experiments. The active components of BHD were identified from UPLC-Q-TOF-MS and literature mining. Systems pharmacology and proteomics were employed to investigate the underlying mechanism of BHD against IS. The AutoDock tool was used for molecular docking. A middle cerebral artery occlusion (MCAO) model rat was utilized to explore the therapeutic benefits of BHD. The rats were divided into sham, model, BHD (5, 10, 20 g/kg, ig) groups. The neurological scores, pathological section characteristics, brain infarct volumes, inflammatory cytokines, and signaling pathways were investigated in vivo experiments. The results of systems pharmacology showed that 13 active compounds and 112 common targets were screened in BHD. The docking results suggested that the active compounds in BHD had a high affinity for the key targets. In vivo experiments demonstrated that BHD exhibited neuroprotective benefits by lowering the neurological score, the volume of the cerebral infarct, the release of inflammatory cytokines, and reducing neuroinflammatory damage in MCAO rats. Furthermore, BHD decreased TNF-α and CD38 levels while increasing ATP2B2, PDE1A, CaMK4, p-PI3K, and p-AKT. Combined with systems pharmacology and proteomic studies, we confirmed that PI3K-Akt and calcium signaling pathways are the key mechanisms for BHD against IS. Furthermore, this study demonstrated the feasibility of combining proteomics with systems pharmacology to study the mechanism of herbal medicine.
Collapse
Affiliation(s)
- Weiguo Liao
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China
| | - Pengcheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China; Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 51006, People's Republic of China
| | - Yingying He
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China; Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipid, Guangzhou 510240, China
| | - Zai Liu
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong 523000, People's Republic of China.
| | - Lisheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China.
| |
Collapse
|