1
|
Germon P, Martins RP. Immune defences of the mammary gland in dairy ruminants. Reprod Domest Anim 2023; 58 Suppl 2:4-14. [PMID: 37133304 DOI: 10.1111/rda.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/29/2023] [Indexed: 05/04/2023]
Abstract
The mammary gland (MG) of ruminants is essential for assuring the immune protection and nutrition of the suckling youngs. The domestication of these species aimed at increasing milk production for human consumption enhanced udder susceptibility to infections and in this context, a better understanding of the MG immune defences has become a cornerstone for the success of dairy farming. In this review, we explore constitutive and inducible immune mechanisms of the mammary gland and briefly discuss the knowledge gaps that remain to be elucidated for the implementation of strategies focused on boosting mammary immune responses.
Collapse
Affiliation(s)
- Pierre Germon
- ISP UMR 1282, INRAE, Université de Tours, Nouzilly, France
| | | |
Collapse
|
2
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
3
|
Rainard P, Foucras G, Martins RP. Adaptive Cell-Mediated Immunity in the Mammary Gland of Dairy Ruminants. Front Vet Sci 2022; 9:854890. [PMID: 35464360 PMCID: PMC9019600 DOI: 10.3389/fvets.2022.854890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023] Open
Abstract
Mastitis is one of the greatest issues for the global dairy industry and controlling these infections by vaccination is a long-sought ambition that has remained unfulfilled so far. In fact, gaps in knowledge of cell-mediated immunity in the mammary gland (MG) have hampered progress in the rational design of immunization strategies targeting this organ, as current mastitis vaccines are unable to elicit a strong protective immunity. The objectives of this article are, from a comprehensive and critical review of available literature, to identify what characterizes adaptive immunity in the MG of ruminants, and to derive from this analysis research directions for the design of an optimal vaccination strategy. A peculiarity of the MG of ruminants is that it does not belong to the common mucosal immune system that links the gut immune system to the MG of rodents, swine or humans. Indeed, the MG of ruminants is not seeded by lymphocytes educated in mucosal epithelia of the digestive or respiratory tracts, because the mammary tissue does not express the vascular addressins and chemokines that would allow the homing of memory T cells. However, it is possible to elicit an adaptive immune response in the MG of ruminants by local immunization because the mammary tissue is provided with antigen-presenting cells and is linked to systemic mechanisms. The optimal immune response is obtained by luminal exposure to antigens in a non-lactating MG. The mammary gland can be sensitized to antigens so that a local recall elicits neutrophilic inflammation and enhanced defenses locally, resulting from the activation of resident memory lymphocytes producing IFN-γ and/or IL-17 in the mammary tissue. The rational exploitation of this immunity by vaccination will need a better understanding of MG cell-mediated immunity. The phenotypic and functional characterization of mammary antigen-presenting cells and memory T cells are amongst research priorities. Based on current knowledge, rekindling research on the immune cells that populate the healthy, infected, or immunized MG appears to be a most promising approach to designing efficacious mastitis vaccines.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
4
|
Effect of Streptococcus uberis on Gamma Delta T Cell Phenotype in Bovine Mammary Gland. Animals (Basel) 2021; 11:ani11123594. [PMID: 34944369 PMCID: PMC8697912 DOI: 10.3390/ani11123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Bovine mastitis (inflammation of the mammary gland) is still an important problem for dairy farmers. This disease causes great financial losses across the world. The common method of treating mastitis is through the use of antibiotics. Antibiotic treatment should be minimized because of increasing antibiotic resistance. Streptococcus uberis (S. uberis) is one of the most important pathogens that causes bovine mastitis. This bacterium is able to hide and survive inside of epithelial cells. In this situation, antibiotic treatment is not efficient. Therefore, it is necessary to study the pathogenesis of mastitis that is caused by S. uberis to better understand how to treat this disease. In this study, we investigated a special type of lymphocytes—γδ T cells. The results of our study show that those cells may play a role in terminating inflammation in the mammary glands of cattle. Abstract In this study, we focused analyzing γδ T cells during bovine mammary gland inflammation induced by Streptococcus uberis. A mammary gland cell suspension was obtained using lavage 24, 48, 72, and 168 h after intramammary-induced infection. The proportion of lymphocytes increased during the entire week in which inflammation was present. The γδ T cells were also elevated during inflammation, reaching their peak at 72 h following induced inflammation. The percentage of apoptotic lymphocytes continually increased, with the highest proportion occurring 168 h after S. uberis infection. The results show that γδ T cells may be involved in the resolution of inflammation in bovine mammary glands, with the apoptosis of those cells potentially playing an important role.
Collapse
|
5
|
Revskij D, Haubold S, Plinski C, Viergutz T, Tuchscherer A, Kröger-Koch C, Albrecht E, Günther J, Tröscher A, Hammon HM, Schuberth HJ, Mielenz M. Cellular detection of the chemokine receptor CXCR4 in bovine mammary glands and its distribution and regulation on bovine leukocytes. J Dairy Sci 2021; 105:866-876. [PMID: 34763920 DOI: 10.3168/jds.2021-20799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
Mastitis has a high incidence in dairy cows. Experimental infection with Escherichia coli increased the number of leukocytes in milk and the gene expression of the chemokine receptor CXCR4 in mammary gland tissues. A link between CXCR4 expression and lipopolysaccharide sensing was demonstrated in other species using in vitro models. The receptor that binds the chemokine stomal cell-derived factor 1 might be associated with the inflammatory response in bovine mammary glands. However, studies in cows are rare, and data on the localization of CXCR4 in bovine mammary glands and its distribution in bovine leukocytes are lacking. Fatty acids (FA) affect the inflammatory response. In human peripheral blood monocytes, exposure to conjugated linoleic acids (CLA) decreases the expression of CXCR4, leading to a decreased inflammatory response in these cells. In this study, we analyzed the expression of CXCR4 in the mammary glands of dairy cows by immunohistochemistry (n = 5) and laser capture microdissection followed by qualitative PCR (n = 3). We characterized the surface expression of CXCR4 on bovine leukocytes, including monocyte subpopulations, first by flow cytometry (n = 5) and then confirmed these results by Western blotting (n = 3). Rumen fistulated dairy cows (n = 4; 126 ± 4 d in milk) were fitted with abomasal infusion tubes, arranged in a 4 × 4 Latin square design, and supplemented for 6 wk twice daily with rising doses of FA followed by a 3-wk washout period. Then, CXCR4 expression on leukocytes was analyzed. The cows received a corn-based diet and were supplemented with coconut oil delivering medium-chain FA (38 g/d), linseed-safflower oil mix delivering n-3 FA (EFA, 39 g of linseed oil and 2 g of safflower oil per day), Lutalin (cis-9,trans-11 and trans-10,cis-12 CLA, 5 g/d; BASF), and EFA + CLA. In the bovine mammary gland, the epithelial cells of the lactiferous duct, but not alveolar epithelial cells, showed clear CXCR4 protein and mRNA signals. Among the leukocyte subsets, monocytes displayed the highest percentage of CXCR4-positive cells (87%), whereas circulating neutrophils showed almost no CXCR4 surface expression (3%) but stored the receptor intracellularly. The percentage of CXCR4-positive leukocytes was not affected by the different FA supplements, but FA supplementation reduced the receptor abundance per cell (40% on average). In conclusion, CXCR4 was clearly detected in the lactiferous duct cells of the mammary gland but not in the alveolar epithelial cells. Compared with other leukocytes, bovine monocytes showed the highest signal intensity of CXCR4 on their surface, whereas granulocytes stored CXCR4 intracellularly. Supplementation with all the FA reduced the surface expression of CXCR4 per leukocyte and could therefore potentially affect the inflammatory status associated with the surface expression of CXCR4. The importance of our observations should be verified in cows with mastitis in the future.
Collapse
Affiliation(s)
- Denis Revskij
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Susanne Haubold
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Christian Plinski
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Torsten Viergutz
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Armin Tuchscherer
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Claudia Kröger-Koch
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Elke Albrecht
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Juliane Günther
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Hans-Joachim Schuberth
- Institute of Immunology, University of Veterinary Medicine, Foundation, Buenteweg 2, 30559 Hannover, Germany
| | - Manfred Mielenz
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
6
|
Rainard P, Cunha P, Martins RP, Gilbert FB, Germon P, Foucras G. Type 3 immunity: a perspective for the defense of the mammary gland against infections. Vet Res 2020; 51:129. [PMID: 33059767 PMCID: PMC7559147 DOI: 10.1186/s13567-020-00852-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Type 3 immunity encompasses innate and adaptive immune responses mediated by cells that produce the signature cytokines IL-17A and IL-17F. This class of effector immunity is particularly adept at controlling infections by pyogenic extracellular bacteria at epithelial barriers. Since mastitis results from infections by bacteria such as streptococci, staphylococci and coliform bacteria that cause neutrophilic inflammation, type 3 immunity can be expected to be mobilized at the mammary gland. In effect, the main defenses of this organ are provided by epithelial cells and neutrophils, which are the main terminal effectors of type 3 immunity. In addition to theoretical grounds, there is observational and experimental evidence that supports a role for type 3 immunity in the mammary gland, such as the production of IL-17A, IL-17F, and IL-22 in milk and mammary tissue during infection, although their respective sources remain to be fully identified. Moreover, mouse mastitis models have shown a positive effect of IL-17A on the course of mastitis. A lot remains to be uncovered before we can safely harness type 3 immunity to reinforce mammary gland defenses through innate immune training or vaccination. However, this is a promising way to find new means of improving mammary gland defenses against infection.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France.
| | - Patricia Cunha
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France
| | | | | | - Pierre Germon
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
7
|
Marete A, Lund MS, Boichard D, Ramayo-Caldas Y. A system-based analysis of the genetic determinism of udder conformation and health phenotypes across three French dairy cattle breeds. PLoS One 2018; 13:e0199931. [PMID: 29965995 PMCID: PMC6028091 DOI: 10.1371/journal.pone.0199931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023] Open
Abstract
Using GWAS to identify candidate genes associated with cattle morphology traits at a functional level is challenging. The main difficulty of identifying candidate genes and gene interactions associated with such complex traits is the long-range linkage disequilibrium (LD) phenomenon reported widely in dairy cattle. Systems biology approaches, such as combining the Association Weight Matrix (AWM) with a Partial Correlation in an Information Theory (PCIT) algorithm, can assist in overcoming this LD. Used in a multi-breed and multi-phenotype context, the AWM-PCIT could aid in identifying udder traits candidate genes and gene networks with regulatory and functional significance. This study aims to use the AWM-PCIT algorithm as a post-GWAS analysis tool with the goal of identifying candidate genes underlying udder morphology. We used data from 78,440 dairy cows from three breeds and with own phenotypes for five udder morphology traits, five production traits, somatic cell score and clinical mastitis. Cows were genotyped with medium (50k) or low-density (7 to 10k) chips and imputed to 50k. We performed a within breed and trait GWAS. The GWAS showed 9,830 significant SNP across the genome (p < 0.05). Five thousand and ten SNP did not map a gene, and 4,820 SNP were within 10-kb of a gene. After accounting for 1SNP:1gene, 3,651 SNP were within 10-kb of a gene (set1), and 2,673 significant SNP were further than 10-kb of a gene (set2). The two SNP sets formed 6,324 SNP matrix, which was fitted in an AWM-PCIT considering udder depth/ development as the key trait resulting in 1,013 genes associated with udder morphology, mastitis and production phenotypes. The AWM-PCIT detected ten potential candidate genes for udder related traits: ESR1, FGF2, FGFR2, GLI2, IQGAP3, PGR, PRLR, RREB1, BTRC, and TGFBR2.
Collapse
Affiliation(s)
- Andrew Marete
- Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Didier Boichard
- Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Yuliaxis Ramayo-Caldas
- Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
8
|
Kratochvílová L, Sláma P. Overview of Bovine Dendritic Cells. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2018. [DOI: 10.11118/actaun201866030815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Rainard P, Foucras G, Boichard D, Rupp R. Invited review: Low milk somatic cell count and susceptibility to mastitis. J Dairy Sci 2018; 101:6703-6714. [PMID: 29803421 DOI: 10.3168/jds.2018-14593] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
An enduring controversy exists about low milk cell counts and susceptibility to mastitis. The concentration of milk leukocytes, or somatic cell count (SCC), is a well-established direct indicator of mammary gland inflammation that is highly correlated with the presence of a mammary infection. The SCC is also used as a trait for the selection of dairy ruminants less prone to mastitis. As selection programs favor animals with less SCC, and as milk cells contribute to the defense of the mammary gland, the idea that susceptibility to mastitis could possibly be increased in the long term has been put forward and is still widely debated. Epidemiological and experimental studies aimed at relating SCC to susceptibility to mastitis have yielded results that seem contradictory at first sight. Nevertheless, by taking into account the immunobiology of milk and mammary tissue cells and their role in the defense against infection, along with recent studies on SCC-based divergent selection of animals, the issue can be settled. Apparent SCC-linked susceptibility to mastitis is a phenotypic trait that may be linked to immunomodulation but not to selection.
Collapse
Affiliation(s)
- P Rainard
- ISP, Université de Tours, INRA, UMR1282, F-37380 Nouzilly, France.
| | - G Foucras
- IHAP, Université de Toulouse, ENVT, INRA, UMR1225, F-31076 Toulouse, France
| | - D Boichard
- GABI, INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - R Rupp
- GenPhySE, Université de Toulouse, INRA, F-31320 Castanet-Tolosan, France
| |
Collapse
|
10
|
Sipka A, Pomeroy B, Klaessig S, Schukken Y. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro. Comp Immunol Microbiol Infect Dis 2016; 48:54-60. [DOI: 10.1016/j.cimid.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
|
11
|
Pomeroy B, Sipka A, Klaessig S, Schukken Y. Monocyte-derived dendritic cells from late gestation cows have an impaired ability to mature in response to E. coli stimulation in a receptor and cytokine-mediated fashion. Vet Immunol Immunopathol 2015; 167:22-9. [DOI: 10.1016/j.vetimm.2015.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022]
|
12
|
Summerfield A, Auray G, Ricklin M. Comparative Dendritic Cell Biology of Veterinary Mammals. Annu Rev Anim Biosci 2015; 3:533-57. [DOI: 10.1146/annurev-animal-022114-111009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| | - Gael Auray
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| | - Meret Ricklin
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| |
Collapse
|
13
|
Domènech A, Parés S, Bach A, Arís A. Mammary serum amyloid A3 activates involution of the mammary gland in dairy cows. J Dairy Sci 2014; 97:7595-605. [PMID: 25306281 DOI: 10.3168/jds.2014-8403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/04/2014] [Indexed: 01/02/2023]
Abstract
The dry period is a nonlactating phase in which senescent mammary cells are regenerated, which is thought to optimize milk production in the subsequent lactation. In bovines, the dry period normally coexists with pregnancy and the lactogenic hormones delay mammary gland involution and impair the activation of immune system to fight the risk of intramammary infections. Conventionally, long dry periods of up to 60 d are required to allow sufficient mammary regeneration for full milk yield in the next lactation. The aim of this study was to evaluate the potential of mammary serum amyloid A3 (M-SAA3) as an activator of the involution of the mammary gland. One milligram of recombinant M-SAA3 and the corresponding negative controls (saline solution and lipopolysaccharide) were infused into the mammary gland via the teat canal, and mammary secretion samples were taken during the first 3 d after drying off to analyze metalloproteinase activity, somatic cell count, protein, and fat contents. Primary mammary gland epithelial cell cultures and bovine dendritic cells, obtained from necropsy tissue and blood, respectively, were incubated with and without M-SAA3 and cytokine expression was quantified. Last, the protective role of the M-SAA3 against infections was evaluated after a Staphylococcus aureus challenge. Matrix metalloproteinase 9 activity, a key protein that directly participates in the onset of the involution process, was greater in quarters treated with the M-SAA3. Protein content was increased in mammary secretions compared with control quarters. M-SAA3 increased cytokines directly related to innate immunity in both epithelial and dendritic cells and reduced the infection by Staphylococcus aureus.
Collapse
Affiliation(s)
- A Domènech
- Department of Ruminant Production, IRTA, Institute of Research in Agriculture and Technology. Torre Marimon, km 12,1 C-59, Caldes de Montbui, 08140, Barcelona, Spain
| | - S Parés
- Department of Ruminant Production, IRTA, Institute of Research in Agriculture and Technology. Torre Marimon, km 12,1 C-59, Caldes de Montbui, 08140, Barcelona, Spain
| | - A Bach
- Department of Ruminant Production, IRTA, Institute of Research in Agriculture and Technology. Torre Marimon, km 12,1 C-59, Caldes de Montbui, 08140, Barcelona, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, 08007, Barcelona, Spain
| | - A Arís
- Department of Ruminant Production, IRTA, Institute of Research in Agriculture and Technology. Torre Marimon, km 12,1 C-59, Caldes de Montbui, 08140, Barcelona, Spain.
| |
Collapse
|