1
|
Salmonella Typhimurium expressing chromosomally integrated Schistosoma mansoni Cathepsin B protects against schistosomiasis in mice. NPJ Vaccines 2023; 8:27. [PMID: 36849453 PMCID: PMC9969381 DOI: 10.1038/s41541-023-00599-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/13/2023] [Indexed: 03/01/2023] Open
Abstract
Schistosomiasis threatens hundreds of millions of people worldwide. The larval stage of Schistosoma mansoni migrates through the lung and adult worms reside adjacent to the colonic mucosa. Several candidate vaccines are in preclinical development, but none is designed to elicit both systemic and mucosal responses. We have repurposed an attenuated Salmonella enterica Typhimurium strain (YS1646) to express Cathepsin B (CatB), a digestive enzyme important for the juvenile and adult stages of the S. mansoni life cycle. Previous studies have demonstrated the prophylactic and therapeutic efficacy of our plasmid-based vaccine. Here, we have generated chromosomally integrated (CI) YS1646 strains that express CatB to produce a viable candidate vaccine for eventual human use (stability, no antibiotic resistance). 6-8-week-old C57BL/6 mice were vaccinated in a multimodal oral (PO) and intramuscular (IM) regimen, and then sacrificed 3 weeks later. The PO + IM group had significantly higher anti-CatB IgG titers with greater avidity and mounted significant intestinal anti-CatB IgA responses compared to PBS control mice (all P < 0.0001). Multimodal vaccination generated balanced TH1/TH2 humoral and cellular immune responses. Production of IFNγ by both CD4+ and CD8+ T cells was confirmed by flow cytometry (P < 0.0001 & P < 0.01). Multimodal vaccination reduced worm burden by 80.4%, hepatic egg counts by 75.2%, and intestinal egg burden by 78.4% (all P < 0.0001). A stable and safe vaccine that has both prophylactic and therapeutic activity would be ideal for use in conjunction with praziquantel mass treatment campaigns.
Collapse
|
2
|
Kaur R, Arora N, Jamakhani MA, Malik S, Kumar P, Anjum F, Tripathi S, Mishra A, Prasad A. Development of multi-epitope chimeric vaccine against Taenia solium by exploring its proteome: an in silico approach. Expert Rev Vaccines 2020; 19:105-114. [PMID: 31971446 DOI: 10.1080/14760584.2019.1711057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Taenia solium is a neglected tropical disease; larvae of this parasite infect central nervous system i.e. Neurocysticercosis, and adults mature and survive into intestine i.e. Taeniasis. Globally more than 50 million people are at the risk of infection. This is one of the main etiological agents for onset of new early epilepsy in developing countries. However, there is no vaccine available to protect human from its infection. Hence, there is an urgent need for a good vaccine.Methods: We applied immune-informatics approach to design a multi-epitope chimeric vaccine consisting of both B and T-cell epitopes.Results: From the whole transcriptome of Taenia, we identified five suitable peptides present on cell membrane, epitope identification on these peptides were done by using various immunoinformatic software. Physiochemical properties were determined and the tertiary structure of vaccine was predicted, validated and refined, and to increase antigenicity we added linker to them. Best-modeled protein-complex was used for docking study with TLR1-2, TLR4, TLR3 and TLR7 and stability of molecular complex was determined by molecular dynamics simulation.Conclusions: Overall, we attempted to design an efficient subunit chimeric vaccine, which could stimulate humoral and cellular immune responses and could protect against both neurocysticercosis and taeniasis.
Collapse
Affiliation(s)
- Rimanpreet Kaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Naina Arora
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | | | - Shelvia Malik
- Department of Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Pramod Kumar
- Biomedical Informatics Centre, ICMR-National Institute of Traditional Medicine, Belagavi, India
| | - Farhan Anjum
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Shweta Tripathi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
3
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
4
|
Analysis of Immune Responses in Mice Orally Immunized with Recombinant pMG36e-SP-TSOL18/ Lactococcus lactis and pMG36e-TSOL18/ Lactococcus lactis Vaccines of Taenia solium. J Immunol Res 2018; 2018:9262631. [PMID: 30581878 PMCID: PMC6276433 DOI: 10.1155/2018/9262631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/10/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022] Open
Abstract
Cysticercosis is a cosmopolitan zoonotic parasitic disease infected by larval of Taenia solium (T. solium). Several drugs for the treatment of cysticercosis, such as praziquantel, albendazole, and mebendazole, have certain toxicity and side effects. Considering that there is no vaccine available, we studied a new vaccine for cysticercosis in this study. The complete TSOL18 gene and the optimized SP-TSOL18 gene fragments were obtained using PCR-based accurate synthesis method. The secretory and intracellular recombinant pMG36e-SP-TSOL18/Lactococcus lactis (L. lactis) and pMG36e-TSOL18/L. lactis vaccines of T. solium were prepared. Immune responses in mice orally immunized with these two recombinant L. lactis vaccines were analyzed by the determination of specific antibodies (IgG, IgG1, IgG2a, and sIgA) in serum, spleen lymphocyte proliferation, and cytokines (IL-2, IFN-γ, IL-4, and IL-10) in spleen lymphocyte culture supernatant. Our results showed that, after the first immunization, in these two recombinant L. lactis vaccine groups, the levels of serum specific IgG, IgG2a, and IgG1 increased on 14–56 d and reached the highest level on days 42, 42, and 28, respectively. The level of specific sIgA of intestinal mucosa also increased on 14–56 d and reached the highest level on day 42. The level of spleen lymphocyte proliferation increased on 14–56 d and reached the highest level on day 42. The levels of IL-2, IFN-γ, IL-4, and IL-10 in spleen lymphocyte culture supernatant increased on 14–56 d and reached the highest level on days 42, 42, 28, and 28, respectively. These results indicated that the recombinant pMG36e-SP-TSOL18/L. lactis and pMG36e-TSOL18/L. lactis vaccines can induce specific cellular, humoral, and mucosal immune responses in mice with oral vaccination. More importantly, the recombinant pMG36e-SP-TSOL18/L. lactis vaccine has a better immune effect. In summary, these results demonstrated the possibility of using L. lactis strain as a vector to deliver protective antigens of T. solium.
Collapse
|
5
|
Zhang M, Sun C, Gu J, Yan X, Wang B, Cui Z, Sun X, Tong C, Feng X, Lei L, Han W. Salmonella Typhimurium strain expressing OprF-OprI protects mice against fatal infection by Pseudomonas aeruginosa. Microbiol Immunol 2016; 59:533-44. [PMID: 26249788 DOI: 10.1111/1348-0421.12291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 01/16/2023]
Abstract
Pseudomonas aeruginosa poses a major threat to human health and to the mink industry. Thus, development of vaccines that elicit robust humoral and cellular immunity against P. aeruginosa is greatly needed. In this study, a recombinant attenuated Salmonella vaccine (RASV) that expresses the outer membrane proteins fusion OprF190-342 -OprI21-83 (F1I2) from P. aeruginosa was constructed and the potency of this vaccine candidate assessed by measuring F1I2-specific humoral immune responses upon vaccination through s.c. or oral routes. S.C. administration achieved higher serum IgG titers and IgA titers in the intestine and induced stronger F1I2-specific IgG and IgA titers in lung homogenate than did oral administration, which resulted in low IgG titers and no local IgA production. High titers of IFN-γ, IL-4, and T-lymphocyte subsets induced a mixed Th1/Th2 response in mice immunized s.c., indicating elicitation of cellular immunity. Importantly, when immunized mice were challenged with P. aeruginosa by the intranasal route 30 days after the initial immunization, s.c. vaccination achieved 77.78% protection, in contrast to 41.18% via oral administration and 66.67% via Escherichia coli-expressed F1I2 (His-F1I2) vaccination. These results indicate that s.c. vaccination provides a better protective response against P. aeruginosa infection than do oral administration and the His-F1I2 vaccine.
Collapse
Affiliation(s)
| | | | | | - Xinwu Yan
- College of Animal Science, Jilin University, No. 5333, Xi'an Street, Changchun, Jilin, 130062
| | | | | | | | | | | | | | - Wenyu Han
- College of Veterinary Medicine.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
6
|
Tc52 amino-terminal-domain DNA carried by attenuated Salmonella enterica serovar Typhimurium induces protection against a Trypanosoma cruzi lethal challenge. Infect Immun 2014; 82:4265-75. [PMID: 25069980 DOI: 10.1128/iai.02190-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this work we immunized mice with DNA encoding full-length Tc52 or its amino- or carboxy-terminal (N- and C-term, respectively) domain carried by attenuated Salmonella as a DNA delivery system. As expected, Salmonella-mediated DNA delivery resulted in low antibody titers and a predominantly Th1 response, as shown by the ratio of IgG2a/IgG1-specific antibodies. Despite modest expression of Tc52 in trypomastigotes, the antibodies elicited by vaccination were able to mediate lysis of the trypomastigotes in the presence of complement and inhibit their invasion of mammal cells in vitro. The strongest functional activity was observed with sera from mice immunized with Salmonella carrying the N-term domain (SN-term), followed by Tc52 (STc52), and the C-term domain (SC-term). All immunized groups developed strong cellular responses, with predominant activation of Th1 cells. However, mice immunized with SN-term showed higher levels of interleukin-10 (IL-10), counterbalancing the inflammatory reaction, and also strong activation of Tc52-specific gamma interferon-positive (IFN-γ(+)) CD8(+) T cells. In agreement with this, although all prototypes conferred protection against infection, immunization with SN-term promoted greater protection than that with SC-term for all parameters tested and slightly better protection than that with STc52, especially in the acute stage of infection. We conclude that the N-terminal domain of Tc52 is the section of the protein that confers maximal protection against infection and propose it as a promising candidate for vaccine development.
Collapse
|
7
|
Rasamoelina-Andriamanivo H, Porphyre V, Jambou R. Control of cysticercosis in Madagascar: beware of the pitfalls. Trends Parasitol 2013; 29:538-47. [PMID: 24145061 DOI: 10.1016/j.pt.2013.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 01/21/2023]
Abstract
Taenia solium cysticercosis is a zoonosis of public health importance in areas where the disease is endemic, with significant economic impacts on human health and the swine industry. Several gaps remain in the epidemiology of the parasite and the strategies of control in developing countries. We detail the key factors to consider in Madagascar in terms of the porcine husbandry system, Taenia transmission cycle, and diagnosis of cysticercosis in pigs, in order to better estimate the sanitary and economic impacts of this parasitic disease as well as to define an integrated control program.
Collapse
Affiliation(s)
- Harentsoaniaina Rasamoelina-Andriamanivo
- FOFIFA, Département de Recherches Zootechniques et Vétérinaires, Antananarivo, Madagascar; Département Vétérinaire, Faculté de Médecine, Antananarivo, Madagascar
| | | | | |
Collapse
|