1
|
Garay E, Fontana D, Villarraza J, Fuselli A, Gugliotta A, Antuña S, Tardivo B, Rodríguez MC, Gastaldi V, Battagliotti JM, Alvarez D, Castro E, Cassataro J, Ceaglio N, Prieto C. Design and characterization of chimeric Rabies-SARS-CoV-2 virus-like particles for vaccine purposes. Appl Microbiol Biotechnol 2023; 107:3495-3508. [PMID: 37126083 PMCID: PMC10150342 DOI: 10.1007/s00253-023-12545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
Due to the high number of doses required to achieve adequate coverage in the context of COVID-19 pandemics, there is a great need for novel vaccine developments. In this field, there have been research approaches that focused on the production of SARS-CoV-2 virus-like particles. These are promising vaccine candidates as their structure is similar to that of native virions but they lack the genome, constituting a biosafe alternative. In order to produce these structures using mammal cells, it has been established that all four structural proteins must be expressed. Here we report the generation and characterization of a novel chimeric virus-like particle (VLP) that can be produced by the expression of a single novel fusion protein that contains SARS-CoV-2 spike (S) ectodomain fused to rabies glycoprotein membrane anchoring region in HEK293 cells. This protein is structurally similar to native S and can autonomously bud forming enveloped VLPs that resemble native virions both in size and in morphology, displaying S ectodomain and receptor binding domain (RBD) on their surface. As a proof of concept, we analyzed the immunogenicity of this vaccine candidate in mice and confirmed the generation of anti-S, anti-RBD, and neutralizing antibodies. KEY POINTS: • A novel fusion rabies glycoprotein containing S ectodomain was designed. • Fusion protein formed cVLPs that were morphologically similar to SARS-CoV-2 virions. • cVLPs induced anti-S, anti-RBD, and neutralizing antibodies in mice.
Collapse
Affiliation(s)
- Ernesto Garay
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina.
| | - Javier Villarraza
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Antonela Fuselli
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Agustina Gugliotta
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Sebastián Antuña
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Belén Tardivo
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - María Celeste Rodríguez
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Victoria Gastaldi
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Juan Manuel Battagliotti
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" UNSAM-CONICET, Pcia. Buenos Aires, San Martin, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" UNSAM-CONICET, Pcia. Buenos Aires, San Martin, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" UNSAM-CONICET, Pcia. Buenos Aires, San Martin, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Claudio Prieto
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
- Cellargen Biotech SRL, FBCB (School of Biochemistry and Biological Sciences) Biotechnological Development Laboratory, Ciudad Universitaria UNL, (S3000ZAA), Santa Fe, Argentina
| |
Collapse
|
2
|
Commercially Available Textiles as a Scaffolding Platform for Large-Scale Cell Culture. Int J Biomater 2023; 2023:2227509. [PMID: 36909982 PMCID: PMC9995198 DOI: 10.1155/2023/2227509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The present study outlines the evaluation of textile materials that are currently in the market for cell culture applications. By using normal LaserJet printing techniques, we created the substrates, which were then characterized physicochemically and biologically. In particular, (i) we found that the weave pattern and (ii) the chemical nature of the textiles significantly influenced the behaviour of the cells. Textiles with closely knitted fibers and cell adhesion motifs, exhibited better cell adhesion and proliferation over a period of 7 days. All the substrates supported good viability of cells (>80%). We believe that these aspects make commercially available textiles as a potential candidate for large-scale culture of adherent cells.
Collapse
|
3
|
Rabies Vaccine: Recent Update and Comprehensive Review of in vitro and in vivo Studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Garay E, Fontana D, Leschiutta L, Kratje R, Prieto C. Rational design of novel fusion rabies glycoproteins displaying a major antigenic site of foot-and-mouth disease virus for vaccine applications. Appl Microbiol Biotechnol 2022; 106:579-592. [PMID: 34971413 PMCID: PMC8718594 DOI: 10.1007/s00253-021-11747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Chimeric virus-like particles are self-assembling structures composed of viral proteins that had been modified to incorporate sequences from different organisms, being able to trigger immune responses against the heterologous sequence. However, the identification of suitable sites for that purpose in the carrier protein is not an easy task. In this work, we describe the generation of rabies chimeric VLPs that expose a major antigenic site of foot-and-mouth disease virus (FMDV) by identifying suitable regions in rabies glycoprotein (RVG), as a proof of concept of a novel heterologous display platform for vaccine applications. To identify adequate sites for insertion of heterologous sequences without altering the correct folding of RVG, we identified regions that were evolutionally non-conserved in Lyssavirus glycoproteins and performed a structural analysis of those regions using a 3D model of RVG trimer that we generated. The heterologous sequence was inserted in three different sites within RVG sequence. In every case, it did not affect the correct folding of the protein and was surface exposed, being recognized by anti-FMDV antibodies in expressing cells as well as in the surface of VLPs. This work sets the base for the development of a heterologous antigen display platform based on rabies VLPs. KEY POINTS: • Adequate regions for foreign epitope display in RVG were found. • G-H loop of FMDV was inserted in three regions of RVG. • The foreign epitope was detected by specific antibodies on fusion proteins. • G-H loop was detected on the surface of chimeric VLPs.
Collapse
Affiliation(s)
- Ernesto Garay
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | - Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina.
| | - Lautaro Leschiutta
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| |
Collapse
|
5
|
Bernardino TC, Astray RM, Pereira CA, Boldorini VL, Antoniazzi MM, Jared SGS, Núñez EGF, Jorge SAC. Production of Rabies VLPs in Insect Cells by Two Monocistronic Baculoviruses Approach. Mol Biotechnol 2021; 63:1068-1080. [PMID: 34228257 DOI: 10.1007/s12033-021-00366-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Rabies is an ancient zoonotic disease that still causes the death of over 59,000 people worldwide each year. The rabies lyssavirus encodes five proteins, including the envelope glycoprotein and the matrix protein. RVGP is the only protein exposed on the surface of viral particle, and it can induce immune response with neutralizing antibody formation. RVM has the ability to assist with production process of virus-like particles. VLPs were produced in recombinant baculovirus system. In this work, two recombinant baculoviruses carrying the RVGP and RVM genes were constructed. From the infection and coinfection assays, we standardized the best multiplicity of infection and the best harvest time. Cell supernatants were collected, concentrated, and purified by sucrose gradient. Each step was used for protein detection through immunoassays. Sucrose gradient analysis enabled to verify the separation of VLPs from rBV. Through the negative contrast technique, we visualized structures resembling rabies VLPs produced in insect cells and rBV in the different fractions of the sucrose gradient. Using ELISA to measure total RVGP, the recovery efficiency of VLPs at each stage of the purification process was verified. Thus, these results encourage further studies to confirm whether rabies VLPs are a promising candidate for a veterinary rabies vaccine.
Collapse
Affiliation(s)
- Thaissa Consoni Bernardino
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, CEP, 05503-900, Brazil
| | - Renato Mancini Astray
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, CEP, 05503-900, Brazil
| | - Carlos Augusto Pereira
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, CEP, 05503-900, Brazil
| | - Vera Lucia Boldorini
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, CEP, 05503-900, Brazil
| | | | | | - Eutimio Gustavo Fernández Núñez
- Grupo de Engenharia de Bioprocessos. Escola de Artes, Ciências E Humanidades (EACH), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Soraia Attie Calil Jorge
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, CEP, 05503-900, Brazil.
| |
Collapse
|
6
|
Fontana D, Marsili F, Etcheverrigaray M, Kratje R, Prieto C. Rabies VLPs adjuvanted with saponin-based liposomes induce enhanced immunogenicity mediated by neutralizing antibodies in cattle, dogs and cats. J Virol Methods 2020; 286:113966. [PMID: 32905818 DOI: 10.1016/j.jviromet.2020.113966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
We carried out an investigation on rabies virus-like particles (RV-VLPs) expressed in HEK293 cells using serum free medium. These RV-VLPs were formulated with two different adjuvants in order to analyse the enhancement of the triggered immune response and its stability. In experiments in mice, RV-VLPs showed an enhanced humoral immune response when injected with adjuvant, in contrast to the obtained for the RV-VLPs without adjuvant addition. Besides, higher titers of neutralizing antibodies were induced when RV-VLPs were formulated with LipoSap® in comparison with the obtained with Alhydrogel®. At the same time, the positive effect of this adjuvant in vaccine's potency and stability was demonstrated, showing that LipoSap® significantly increases the value obtained in NIH efficiency test for rabies vaccine, and proving that this value is maintained after 15 months storage at 4 °C. Further, we showed that RV-VLPs induces an immune response based on neutralizing antibodies when cat, dogs and bovines were vaccinated with only one dose of RV-VLPs. These results demonstrated that this vaccine candidate could be applied for the prevention of rabies in pets as well as for the control of paralytic rabies in cattle.
Collapse
Affiliation(s)
- Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina; UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina.
| | - Federico Marsili
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Marina Etcheverrigaray
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina; Cellargen Biotech S.R.L., Antonia Godoy 6369, S3000ZAA, Santa Fe, Argentina
| |
Collapse
|
7
|
Optimization and validation of a blocking ELISA for quantitation of anti-rabies immunoglobulins in multispecies sera. Appl Microbiol Biotechnol 2020; 104:4127-4139. [PMID: 32170383 DOI: 10.1007/s00253-020-10490-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/25/2022]
Abstract
We developed a fast, rabies virus-free, in vitro method, based on a blocking ELISA (bELISA), to detect and accurately quantify anti-rabies glycoprotein antibodies in serum of several animal species. In this method, purified rabies virus-like particles (VLPs) are used as antigen to coat the plates, while the presence of specific rabies immunoglobulins is revealed through blocking the recognition of these VLPs by a biotinylated monoclonal antibody. A quality by design approach was carried out in order to optimize the method performance, improving the sensitivity and, thereby, reducing the limit of detection of this assay. After the method validation, we confirmed that the bELISA method is able to detect a concentration of 0.06 IU/mL rabies immunoglobulins, titer lower than the 0.5 IU/mL cutoff value established as indication for correct vaccination. Further, we assessed the correlation between bELISA, the MNT, and the Platelia methods, confirming the accuracy of this new assay. On the other hand, precision was evaluated, obtaining acceptable repeatability and intermediate precision values, showing that this bELISA could be proposed as a potential alternative method, replacing the gold standard techniques in vaccination schemes and becoming a routine control technique within regional rabies surveillance programs.
Collapse
|