1
|
Rautenschlein S, Schat KA. The Immunological Basis for Vaccination. Avian Dis 2024; 67:366-379. [PMID: 38300658 DOI: 10.1637/aviandiseases-d-23-99996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 02/02/2024]
Abstract
Vaccination is crucial for health protection of poultry and therefore important to maintaining high production standards. Proper vaccination requires knowledge of the key players of the well-orchestrated immune system of birds, their interdependence and delicate regulation, and, subsequently, possible modes of stimulation through vaccine antigens and adjuvants. The knowledge about the innate and acquired immune systems of birds has increased significantly during the recent years but open questions remain and have to be elucidated further. Despite similarities between avian and mammalian species in their composition of immune cells and modes of activation, important differences exist, including differences in the innate, but also humoral and cell-mediated immunity with respect to, for example, signaling transduction pathways, antigen presentation, and cell repertoires. For a successful vaccination strategy in birds it always has to be considered that genotype and age of the birds at the time point of immunization as well as their microbiota composition may have an impact and may drive the immune reactions into different directions. Recent achievements in the understanding of the concept of trained immunity will contribute to the advancement of current vaccine types helping to improve protection beyond the specificity of an antigen-driven immune response. The fast developments in new omics technologies will provide insights into protective B- and T-cell epitopes involved in cross-protection, which subsequently will lead to the improvement of vaccine efficacy in poultry.
Collapse
Affiliation(s)
- Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Clinic for Poultry, Hannover, Lower Saxony 30559, Germany,
| | - Karel A Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
2
|
Wu Y, Li Y, Zhao J, Wu Y, Lu D, Jia J, Chen T, He M, Lin J, Yang Q. IBV QX affects the antigen presentation function of BMDCs through nonstructural protein16. Poult Sci 2023; 102:102620. [PMID: 36972672 PMCID: PMC9981267 DOI: 10.1016/j.psj.2023.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The gamma-coronavirus infectious bronchitis virus (IBV) has a high mutation rate and mainly invades the respiratory mucosa, making it difficult to prevent and causing great economic losses. Nonstructural protein 16 (NSP16) of IBV QX also not only plays an indispensable role in virus invading but also might hugely influence the antigen's recognition and presentation ability of host BMDCs. Hence, our study tries to illustrate the underline mechanism of how NSP16 influences the immune function of BMDCs. Initially, we found that NSP16 of the QX strain significantly inhibited the antigen presentation ability and immune response of mouse BMDCs, which was stimulated by Poly (I:C) or AIV RNA. Besides mouse BMDCs, we also found that NSP16 of the QX strain also significantly stimulated the chicken BMDCs to activate the interferon signaling pathway. Furthermore, we preliminarily demonstrated that IBV QX NSP16 inhibits the antiviral system by affecting the antigen-presenting function of BMDCs.
Collapse
Affiliation(s)
- Yaotang Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Yuchen Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jinhao Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yang Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Danqing Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Junpeng Jia
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tianxin Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingzhe He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
3
|
Zhao X, Zhang Y, He W, Wei Y, Han S, Xia L, Tan B, Yu J, Kang H, Ma M, Zhu Q, Yin H, Cui C. Effects of Small Peptide Supplementation on Growth Performance, Intestinal Barrier of Laying Hens During the Brooding and Growing Periods. Front Immunol 2022; 13:925256. [PMID: 35874672 PMCID: PMC9301363 DOI: 10.3389/fimmu.2022.925256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The growing period is a critical period for growth and development in laying hens. During this period, chicks grow rapidly, but are accompanied by unstable digestive function, incomplete organ development, and high mortality. Small peptide, a feed additive, which has been proved to promote intestinal development and immunity in poultry. In order to elucidate the effects of small peptides on growth performance, immunity, antioxidant capacity, and intestinal health of growing laying hens, a total of 900 Tianfu green shell laying hens (1-day-old) were randomly divided into 5 treatments with 6 replicates of 30 birds each in this 18-week trial. Dietary treatments included a corn-soybean meal-based diet supplemented with 0 g/kg, 1.5 g/kg, 3.0 g/kg, 4.5 g/kg and 6.0 g/kg small peptide, respectively. The results showed that the supplementation of small peptides significantly increased growth rate (P<0.05) in laying hens, as well as elevated the serum immunoglobulins (P<0.05) and antioxidant indices (P<0.05), however, it decreased inflammation parameters (P<0.05). The supplementation of small peptides enhanced the intestinal function by promoting gut development (P<0.05) and improving gut integrity (P<0.05), barrier function (P<0.05) and the diversity of gut microbiota (P<0.05) in the growing hens. The best performance was recorded among the hens fed 4.5 g/kg level of small peptide. Taken together, these results showed that small peptide supplementation could improve the economic value of growing hens by promoting growth rate, disease resistance, and the optimal amount of addition for Tianfu green shell laying hens was 4.5 g/kg.
Collapse
Affiliation(s)
- Xiyu Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wentao He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yuanhang Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lu Xia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Tan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mengen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Huadong Yin,
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Zhang Q, Xie T, Mo G, Zhang Z, Lin L, Zhang X. ACSL1 Inhibits ALV-J Replication by IFN-Ⅰ Signaling and PI3K/Akt Pathway. Front Immunol 2021; 12:774323. [PMID: 34777393 PMCID: PMC8585972 DOI: 10.3389/fimmu.2021.774323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/07/2021] [Indexed: 01/06/2023] Open
Abstract
J subgroup avian leukosis virus (ALV-J) infection causes serious immunosuppression problems, leading to hematopoietic malignancy tumors in chicken. It has been demonstrated that interferon-stimulated genes (ISGs) could limit ALV-J replication; nevertheless, the underlying mechanisms remain obscure. Here, we demonstrate that Long-chain Acyl-CoA synthetase 1 (ACSL1) is an interferon (IFN)-stimulated gene that specifically restricts the replication of ALV-J due to the higher IFN-I production. More importantly, ACSL1 induces primary monocyte-derived macrophages (MDMs) to pro-inflammatory phenotypic states during ALV-J infection, and ACSL1 mediates apoptosis through the PI3K/Akt signaling pathway in ALV-J-infected primary monocyte-derived macrophages (MDMs). Overall, these results provide evidence that ACSL1 contributes to the antiviral response against ALV-J.
Collapse
Affiliation(s)
- Qihong Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Zihao Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ling Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Uribe-Diaz S, Nazeer N, Jaime J, Vargas-Bermúdez DS, Yitbarek A, Ahmed M, Rodríguez-Lecompte JC. Folic acid enhances proinflammatory and antiviral molecular pathways in chicken B-lymphocytes infected with a mild infectious bursal disease virus. Br Poult Sci 2021; 63:1-13. [PMID: 34287101 DOI: 10.1080/00071668.2021.1958298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. This study evaluated the effect of folic acid (FA) supplementation on the proinflammatory and antiviral molecular pathways of B-lymphocytes infected with a modified live IBDV (ST-12) mild vaccine strain during a timed post-infection analysis.2. A chicken B-lymphocytes (DT-40) cell line was cultured in triplicate at a concentration of 5 × 105 cells per well in 24-well plates; and was divided into three groups: 1: No virus, FA; 2: Virus, no FA; 3: Virus + FA at a concentration of 3.96 mM. The experiment was repeated three times.3. Cells in groups 2 and 3 were infected with a modified live IBDV (ST-12) mild vaccine strain at one multiplicity of infection (MOI: 1). After 1 hour of virus adsorption, samples were collected at 0, 3, 6, 12, 24 and 36 hours post-infection (hpi).4. The modified live IBDV (ST-12) mild vaccine strain triggered a B-lymphocyte specific immune response associated with the upregulation of genes involved in virus recognition (Igß), virus sensing (TLR-2, TLR-3, TLR-4 and MDA5), signal transduction and regulation (TRIF, MyD88 and IRF7), and the antiviral effector molecules (IFN-α, OAS, PKR, and viperin).5. FA supplementation modulated IBDV replication and regulated the proinflammatory and antiviral downstream molecular pathways.6. In conclusion, the low virulent pathotype serotype I modified live IBDV (ST-12) mild vaccine strain was able to trigger and mount an immune response in chicken B-lymphocytes without affecting B-cell viability. FA supplementation modulated B lymphocytes response and improved their innate immune proinflammatory and antiviral response molecular pathways.
Collapse
Affiliation(s)
- S Uribe-Diaz
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada.,Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - N Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - J Jaime
- Bogotá. Faculty of Veterinary Medicine and Zootechnic. Animal Health Department; Infectiology and Immunology Research Centre (CI3V), National University of Colombia, Bogotá, Colombia
| | - D S Vargas-Bermúdez
- Bogotá. Faculty of Veterinary Medicine and Zootechnic. Animal Health Department; Infectiology and Immunology Research Centre (CI3V), National University of Colombia, Bogotá, Colombia
| | - A Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - M Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - J C Rodríguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
6
|
Comparative Study of Protection against Newcastle Disease in Young Broilers Administered Natural Chicken Alpha Interferon via Oral and Intramuscular Routes. mSphere 2020; 5:5/4/e00585-20. [PMID: 32669457 PMCID: PMC7364220 DOI: 10.1128/msphere.00585-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease (ND) is an economically important contagious disease of wild and domestic birds worldwide. The disease causes severe economic losses in terms of production due to high mortality and morbidity in nonvaccinated chickens. Despite extensive vaccination approaches, Newcastle disease (ND) remains a permanent threat to the poultry industry worldwide. In the current study, we used natural chicken IFN-α as an innate immune modulator to counteract ND in chickens. We report that chIFN-α is effective in protecting the chickens against ND and also prevents shedding of the virus, which can then prevent further spread of the disease. We propose that in addition to vaccination, chIFN-α therapy could be an effective option for controlling ND in areas of endemicity. Despite extensive vaccination approaches, Newcastle disease (ND) remains a permanent threat to the poultry industry worldwide. Besides vaccination, there is a burgeoning demand for new antivirals for use in interventions to control ND. One strategy is to strengthen the host innate immunity via host-derived innate immune proteins. Type I interferons define one of the first lines of innate immune defense against viral infections. Chicken interferon alpha (chIFN-α) is one of the potent cytokines that trigger antiviral responses. In the current study, we investigated the therapeutic effect of natural chIFN-α administered via oral and intramuscular (i.m.) routes against ND in broiler chickens. Our results showed that the level of protection against ND in response to chIFN-α therapy was dependent on the route and dose of IFN administration. A better therapeutic effect was observed in chickens treated with chIFN-α via the oral route than in those treated via the i.m. route. Regardless of the administration route, double-dose chIFN-α (2,000-U) treatments provided better protection than single-dose (1,000-U) treatments. However, complete protection against ND was achieved in birds treated with repeated doses of chIFN-α via the oral route. Histopathology of trachea, proventriculus, spleen, and liver showed a significant improvement in ND-induced degenerative changes in double-dose IFN-treatment groups compared to single-dose groups. Results of the hemagglutination test demonstrated a decrease in ND virus (NDV) titer in IFN-treated groups. Also, double doses of chIFN-α via oral route resulted in early recovery in weight gain. We propose that chIFN-α therapy via oral route could be an important therapeutic tool to control NDV infection in chicken. IMPORTANCE Newcastle disease (ND) is an economically important contagious disease of wild and domestic birds worldwide. The disease causes severe economic losses in terms of production due to high mortality and morbidity in nonvaccinated chickens. Despite extensive vaccination approaches, Newcastle disease (ND) remains a permanent threat to the poultry industry worldwide. In the current study, we used natural chicken IFN-α as an innate immune modulator to counteract ND in chickens. We report that chIFN-α is effective in protecting the chickens against ND and also prevents shedding of the virus, which can then prevent further spread of the disease. We propose that in addition to vaccination, chIFN-α therapy could be an effective option for controlling ND in areas of endemicity.
Collapse
|
7
|
Anjum FR, Anam S, Rahman SU, Ali S, Aslam MA, Rizvi F, Asif M, Abdullah RM, Abaidullah M, Shakir MZ, Goraya MU. Anti-chicken type I IFN countermeasures by major avian RNA viruses. Virus Res 2020; 286:198061. [PMID: 32561378 DOI: 10.1016/j.virusres.2020.198061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022]
Abstract
Chicken type I interferons (type I IFNs) are key antiviral players of the chicken innate immune system and are considered potent antiviral agents against avian viral pathogens. Chicken type I IFNs are divided into three subtypes namely, chIFN-α, chIFN-β, and chIFN-κ. Viral pathogen-associated molecular patterns (PAMPs) recognized by their corresponding specific PRRs (pattern recognition receptors) induce the expression of chicken type I IFNs. Interaction of chicken type I IFNs with their subsequent IFN receptors results in the activation of the JAK-STAT pathway, which in turn activates hundreds of chicken interferon-stimulated genes (chISGs). These chISGs establish an antiviral state in neighboring cells and prevent the replication and dissemination of viruses within chicken cells. Chicken type I IFNs activate different pathways that constitute major antiviral innate defense mechanisms in chickens. However, evolutionary mechanisms in viruses have made them resistant to these antiviral players by manipulating host innate immune pathways. This review focuses on the underlying molecular mechanisms employed by avian RNA viruses to counteract chicken type I IFNs and chISGs through different viral proteins. This may help to understand host-pathogen interactions and the development of novel therapeutic strategies to control viral infections in poultry.
Collapse
Affiliation(s)
| | - Sidra Anam
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Farzana Rizvi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asif
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Abaidullah
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | | | | |
Collapse
|