1
|
El-Saeed BA, Elshebrawy HA, Zakaria AI, Abdelkhalek A, Imre K, Morar A, Herman V, Sallam KI. Multidrug-Resistant Proteus mirabilis and Other Gram-Negative Species Isolated from Native Egyptian Chicken Carcasses. Trop Med Infect Dis 2024; 9:217. [PMID: 39330906 PMCID: PMC11436119 DOI: 10.3390/tropicalmed9090217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Poultry carcasses may be reservoirs for the zoonotic transmission of antimicrobial-resistant bacteria to humans and pose a major public health hazard. During the isolation of Salmonella from poultry and other foods, many of the presumptive typical Salmonella colonies on xylose lysine deoxycholate (XLD) agar were found to lack the invA gene, which is the specific target gene for Salmonella spp. Therefore, the current study aimed to estimate the prevalence and antimicrobial resistance profiles of extensively drug-resistant invA-negative non-Salmonella isolates recovered from native Egyptian chicken carcasses as presumptive Salmonella colonies on XLD agar. The non-Salmonella isolates were detected in 84% (126/150) of the examined native Egyptian chicken carcasses and classified into five genera, with prevalence rates of 64% (96/150), 14% (21/150), 6.7% (10/150), 3.3% (5/150), and 1.3% (2/150) for Proteus, Citrobacter, Shigella, Pseudomonas, and Edwardsiella, respectively. One hundred and ninety-five invA-negative, non-verified presumptive Salmonella isolates were recovered and classified at the species level into Proteus mirabilis (132/195; 67.7%), Proteus vulgaris (11/195; 5.6%), Citrobacter freundii (26/195; 13.3%), Shigella flexneri (8/195; 4.1%), Shigella sonnei (6/195; 3.1%), Shigella dysenteriae (3/195; 1.5%), Pseudomonas fluorescens (6/195; 3.1%), and Edwardsiella tarda (3/195; 1.5%). All (195/195; 100%) of these isolates showed resistance against cefaclor and fosfomycin. Additionally, these isolates showed high resistance rates of 98%, 92.8%, 89.7%, 89.2%, 89.2%, 86.7%, 80%, 78.5%, 74.4%, and 73.9% against cephalothin, azithromycin, vancomycin, nalidixic acid, tetracycline, sulfamethoxazole/trimethoprim, cefepime, gentamicin, cefotaxime, and ciprofloxacin, respectively. Interestingly, all (195/195; 100%) of the identified isolates were resistant to at least five antibiotics and exhibited an average MAR (multiple antibiotic resistance) index of 0.783. Furthermore, 73.9% of the examined isolates were classified as extensively drug-resistant, with an MAR index equal to 0.830. The high prevalence of extensively drug-resistant foodborne Proteus, Citrobacter, Shigella, Pseudomonas, and Edwardsiella isolated from native chicken carcasses poses a great hazard to public health and necessitates more monitoring and concern about the overuse and misuse of antibiotics in humans and animals. This study also recommends the strict implementation of GHP (good hygienic practices) and GMP (good manufacturing practices) in the chicken meat supply chain to protect consumer health.
Collapse
Affiliation(s)
| | - Hend Ali Elshebrawy
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amira Ibrahim Zakaria
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Khalid Ibrahim Sallam
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Campanini-Salinas J, Opitz-Ríos C, Sagredo-Mella JA, Contreras-Sanchez D, Giménez M, Páez P, Tarifa MC, Rubio ND, Medina DA. Antimicrobial Resistance Elements in Coastal Water of Llanquihue Lake, Chile. Antibiotics (Basel) 2024; 13:679. [PMID: 39061361 PMCID: PMC11273793 DOI: 10.3390/antibiotics13070679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance has been stated to be a global health problem. In Chile, the use of antibiotics should be declared by medical prescription, but it is unknown what happens to the drugs once the treatment ends. Among the possibilities for their disposal are the trash or the drain; regardless of which scenario arises, antibiotics could accumulate in the environment, stimulating the emergence of antimicrobial resistance mechanisms and their transfer between microorganisms. Unfortunately, sometimes wastewater ends up in bodies of water, due to the dragging of elements by rain, or by the presence of illegal water discharges. In this work, shotgun metagenomics was used to elucidate the functional and microbial composition of biohazard elements in the bay of Puerto Varas City, Chile. As expected, a high diversity of microorganisms was found, including bacterial elements described as human or animal pathogens. Also, a diverse repertory of antimicrobial resistant genes (ARGs) was detected, which confers mainly resistance to macrolides, beta-lactams, and tetracyclines, consistent with the families of antibiotics most used in Chile. Similar ARGs were identified in DNA mobile elements. In addition, we tested the antimicrobial susceptibility in 14 bacterial strains isolated from Llanquihue Lake. This is the first report of the presence of genomic elements that could constitute a health problem, considering the importance of the interconnection between environmental, animal, and human health, a concept known as One Health.
Collapse
Affiliation(s)
- Javier Campanini-Salinas
- Laboratorio Institucional, Universidad San Sebastián, Puerto Montt 5501842, Chile; (J.C.-S.); (C.O.-R.); (J.A.S.-M.); (N.D.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt 5501842, Chile;
| | - Catherine Opitz-Ríos
- Laboratorio Institucional, Universidad San Sebastián, Puerto Montt 5501842, Chile; (J.C.-S.); (C.O.-R.); (J.A.S.-M.); (N.D.R.)
| | - John A. Sagredo-Mella
- Laboratorio Institucional, Universidad San Sebastián, Puerto Montt 5501842, Chile; (J.C.-S.); (C.O.-R.); (J.A.S.-M.); (N.D.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt 5501842, Chile;
| | | | - Matías Giménez
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay;
| | - Paula Páez
- Centro de Investigaciones y Transferencia de Río Negro, Universidad Nacional de Río Negro, Villa Regina 8336, Argentina; (P.P.); (M.C.T.)
| | - María Clara Tarifa
- Centro de Investigaciones y Transferencia de Río Negro, Universidad Nacional de Río Negro, Villa Regina 8336, Argentina; (P.P.); (M.C.T.)
- Centro de Investigaciones y Transferencia de Río Negro, (CIT Río Negro, UNRN-CONICET), Villa Regina 8336, Argentina
| | - Nataly D. Rubio
- Laboratorio Institucional, Universidad San Sebastián, Puerto Montt 5501842, Chile; (J.C.-S.); (C.O.-R.); (J.A.S.-M.); (N.D.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt 5501842, Chile;
| | - Daniel A. Medina
- Laboratorio Institucional, Universidad San Sebastián, Puerto Montt 5501842, Chile; (J.C.-S.); (C.O.-R.); (J.A.S.-M.); (N.D.R.)
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt 5501842, Chile
| |
Collapse
|
3
|
Onwumere-Idolor OS, Kperegbeyi JI, Imonikebe UG, Okoli CE, Ajibo FE, Njoga EO. Epidemiology of multidrug-resistant zoonotic E. coli from beef processing and retail points in Delta State, Nigeria: Public health implications. Prev Vet Med 2024; 224:106132. [PMID: 38335831 DOI: 10.1016/j.prevetmed.2024.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
Some sorbitol non-fermenting E. coli (SN-F E. coli) and all E. coli O157 are zoonotic. Contamination of beef with zoonotic E. coli at the processing or retail point is a significant public health problem. Despite the public health importance of these organisms, there is no published data on the prevalence and antimicrobial resistance (AMR) of zoonotic E. coli from Delta State, Nigeria. Consequently, this study determined the prevalence and AMR of SN-F E. coli and E. coli O157 isolates from meat contact surfaces at the processing and retail points in the study area. The isolation, biochemical and serological characterisations and AMR status of the isolates were performed following standard microbiological methods. Overall prevalence of SN-F E. coli and E. coli O157 were 13.8% (56/406) and 1.5% (6/406), respectively. Majority of the 56 SN-F E. coli (64.3%, 36/56) and all the six E. coli O157 (10.7%, 6/56) detected in this study were found at the meat processing points. Most of the SN-F E. coli were isolated at the slaughterhouse floor (31%), meat hooks (17.2%) and meat sellers' knives (17.2%). The SN-F E. coli exhibited greater AMR to ampicillin (67.9%), gentamycin (64.3%) and tetracycline (50%) than other antimicrobial agents tested. No isolate was resistant to aztreonam. All six E. coli O157 isolates were resistant to enrofloxacin. Overall, 23 AMR patterns, comprised 14 from meat processing points and nine from meat retailing points, were observed from the 56 antimicrobial-resistant SN-F E. coli isolates. All the six E. coli O157 and 73.2% (41/56) of the SN-F E. coli isolates were multidrug-resistant. An overall mean multiple antimicrobial resistance index of 0.6 was recorded. Multidrug-resistant zoonotic E. coli were detected at meat processing and retail points in Delta State, Nigeria. The findings warrant the adoption of One Health control approach, "farm to fork" principle of food safety and prudent use of antimicrobial agents in animal agriculture. These may help to limit beef contamination with multidrug-resistant zoonotic E. coli at the processing and retailing points, for public health safety.
Collapse
Affiliation(s)
- Onyinye S Onwumere-Idolor
- Department of Animal Production, Faculty of Agriculture, Delta State University of Science and Technology, Ozoro PMB 005, Delta State, Nigeria
| | - Jameslove I Kperegbeyi
- Department of Animal Production, Faculty of Agriculture, Delta State University of Science and Technology, Ozoro PMB 005, Delta State, Nigeria
| | - Uzezi G Imonikebe
- Department of Animal Production, Faculty of Agriculture, Delta State University of Science and Technology, Ozoro PMB 005, Delta State, Nigeria
| | - Chinwe E Okoli
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja 900109, Federal Capital Territory, Nigeria
| | - Festus E Ajibo
- Department of Animal Health and Production, Enugu State Polytechnic, Iwollo PMB 008, Enugu State, Nigeria
| | - Emmanuel O Njoga
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Animal Health Antimicrobial Resistance Surveillance Sentinel Laboratory, Veterinary Teaching Hospital, University of Nigeria, Nsukka 410001, Nigeria; Veterinary Antimicrobial Resistance Research Group, University of Nigeria, Nsukka 410001, Nigeria.
| |
Collapse
|