1
|
Zhang Y, Lei J, Wen T, Qian Y, Meng C, Sun L, Sun WJ, Cui F. Selective production of functional sn-1,3-diacylglycerol by microbial lipases: A comprehensive review. Food Chem 2025; 481:144017. [PMID: 40179503 DOI: 10.1016/j.foodchem.2025.144017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Since early 1990s, diacylglycerol (DAG) has drawn a continuous trending interest among researchers and oil industries/markets as part of a reduced-energy diet due to its functions to prevent and manage obesity. With the accumulated knowledge, a stereoisomer of sn-1,3-DAG is regarded as the sole compound to contribute to DAG's functions. sn-1,3-DAG can be produced by direct esterification of free fatty acids and glycerol, partial hydrolysis of TAGs/edible oils, and glycerolysis of TAGs/edible oils with glycerol using the regioselective microbial lipases as the catalyst. However, the specific microbial lipases with high efficiency to produce sn-1,3-DAG and their catalytic mechanisms are still a mystery. Herein, we provide an overview of metabolic fates of three stereoisomers of DAGs including sn-1,3-DAG, sn-1,2-DAG and/or sn-2,3-DAG, and synthesis process for sn-1,3-DAG, and critically outline the microbial lipases to selectively produce sn-1,3-DAG, and their pathways and mechanisms, which hopefully presents a reasonable full picture of functions, synthesis schemes, and catalytic performance to improve regioselectivity and catalytic efficiency for sn-1,3-DAG production with high yield.
Collapse
Affiliation(s)
- YiXin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - JianYong Lei
- Jiangsu Fengsheng Bioengineering Co., Ltd, Zhenjiang 212221, PR China
| | - TingTing Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - YuFeng Qian
- Jiangsu Fengsheng Bioengineering Co., Ltd, Zhenjiang 212221, PR China
| | - ChiZhen Meng
- Jiangsu Fengsheng Bioengineering Co., Ltd, Zhenjiang 212221, PR China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China
| | - FengJie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China.
| |
Collapse
|
2
|
Van Wayenbergh E, Verkempinck SHE, Courtin CM, Grauwet T. The impact of wheat bran on vitamin A bioaccessibility in lipid-containing systems. Food Chem 2025; 490:145082. [PMID: 40513490 DOI: 10.1016/j.foodchem.2025.145082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/30/2025] [Accepted: 06/05/2025] [Indexed: 06/16/2025]
Abstract
Wheat bran can stabilise vitamin A (retinyl palmitate), making retinyl palmitate/oil/bran mixtures interesting additives for food fortification. However, vitamin A bioaccessibility in these systems remained unstudied. We investigated if native and toasted wheat bran hamper vitamin A bioaccessibility in bulk and emulsified oil-based systems. Vitamin A bioaccessibility was higher in emulsified (12-45%) than in bulk oil-based systems (6-9%), due to more extensive lipid digestion in emulsified (82-83%) than in bulk oil-based systems (56-59%). For bulk oil, wheat bran did not affect vitamin A bioaccessibility. For emulsified oil, toasted and native wheat bran reduced vitamin A bioaccessibility from 45% to 30% and to 12%, respectively. This was attributed to a reduced vitamin A micelle incorporation upon bran addition and a low vitamin A stability upon native bran addition. Thus, the success of bran addition for enhancing vitamin A uptake depends on its stabilising effect during storage and its impact on bioaccessibility.
Collapse
Affiliation(s)
- Eline Van Wayenbergh
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
Du X, Zhang C, Peng B. Visualization of fluorescently labeled lipase distribution characteristics at the oil-water interface. Bioprocess Biosyst Eng 2025; 48:981-992. [PMID: 40178607 DOI: 10.1007/s00449-025-03157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
A method based on fluorescently labeled enzyme proteins was established to visualize the absorption properties of lipase at the oil-water interface, and it can be used for the effective observation of the distribution characteristics of lipase at the oil-water interface. The optimal conditions for observation include the following: oil content of 10-20% (wt%), concentration of fluorescently labelled enzyme protein of 0.25 mg/mL, reaction temperature of 25-30 °C, emulsion dispersion and stirring time of 10 min, and emulsion resting time of 30-120 s. Based on this method, a preliminary analysis of the effects of oil and lipase species on the distribution characteristics of lipase at the oil-water interface was performed. The results reveal that differences in the distributions of lipase at the oil-water interface of various fats and oils had a certain degree of correspondence with their specificity and that the distribution characteristics of the lipases on the surface of olive oil enabled effective catalytic hydrolysis to a certain extent. This method is a more objective guide for the development of lipase application technology in the fields of tanning, fur making, glue making, detergents, and sewage treatment and so on.
Collapse
Affiliation(s)
- Xian Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Chunxiao Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Biyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
4
|
Venugopal A, Ghosh S, Calò A, Tuveri GM, Battaglia G, Kumar M. Enzyme Controlled Transient Phospholipid Vesicles for Regulated Cargo Release. Angew Chem Int Ed Engl 2025; 64:e202500824. [PMID: 39937954 DOI: 10.1002/anie.202500824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/14/2025]
Abstract
Metabolism in biological systems involves the continuous formation and breakdown of chemical and structural components, driven by chemical energy. In specific, metabolic processes on cellular membranes result in in situ formation and degradation of the constituent phospholipid molecules, by consuming fuel, to dynamically regulate the properties. Synthetic analogs of such chemically fueled phospholipid vesicles have been challenging. Here we report a bio-inspired approach for the in situ formation of phospholipids, from water soluble precursors, and their fuel driven self-assembly into vesicles. We show that the kinetic competition between anabolic and catabolic-like reactions leads to the formation and enzymatic degradation of the double-tailed, vesicle-forming phospholipid. Spectroscopic and microscopic analysis demonstrate the formation of transient vesicles whose lifetime can be easily tuned from minutes to hours. Importantly, our design results in the formation of uniform sized (65 nm) vesicles simply by mixing the precursors, thus avoiding the traditional complex methods. Finally, our sub-100 nm vesicles are of the right size for application in drug delivery. We have demonstrated that the release kinetics of the incorporated cargo molecules can be dynamically regulated for potential applications in adaptive nanomedicine.
Collapse
Affiliation(s)
- Akhil Venugopal
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain
| | - Subhadip Ghosh
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Annalisa Calò
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain
| | - Gian Marco Tuveri
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona, Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Mohit Kumar
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Inorganic and Organic Chemistry, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain)
- Institute de Química Teòrica i Computacional, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
5
|
Tang Z, Yang S, Li W, Chang J. Fat Replacers in Frozen Desserts: Functions, Challenges, and Strategies. Compr Rev Food Sci Food Saf 2025; 24:e70191. [PMID: 40371453 PMCID: PMC12079322 DOI: 10.1111/1541-4337.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025]
Abstract
Frozen desserts are highly valued for their creamy texture and rich mouthfeel, primarily due to their high-fat content. However, the increasing consumption of these products has raised concerns regarding excessive fat intake, which has been linked to health issues such as obesity, diabetes, and cardiovascular disease (CVD). Therefore, there is growing interest in developing fat replacers. Fat replacers can mimic the physicochemical and sensory properties of natural fats in frozen desserts, including texture, mouthfeel, and flavor interaction, providing a comparable experience with a reduced calorie content. However, fat reduction in frozen desserts often leads to undesirable changes, including reduced smoothness and creaminess, increased chalkiness, and the emergence of dark colors and off-flavors. To mitigate these challenges, various strategies have been explored, including optimizing the ratio of ingredients, incorporating masking flavors, modifying processing techniques, and blending with stabilizers. While existing reviews highlight the benefits of fat replacers, they often focus on limited frozen dessert types and provide insufficient insight into replacement mechanisms and improvement strategies. This review aims to bridge this gap by examining a wide range of frozen desserts, comprehensively analyzing protein-based, carbohydrate-based, lipid-based, and complex fat replacers, and detailing their mechanisms of action, application challenges, and effects on the final product quality. Additionally, strategies for enhancing the sensory attributes of reduced-fat frozen desserts and future directions are discussed, ultimately supporting the development of sustainable, healthier, and consumer-acceptable fat alternatives in the food industry.
Collapse
Affiliation(s)
- Zhaoyi Tang
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Jinjiang Technology and Innovation Research InstituteQuanzhouChina
| | - Shuyue Yang
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHong KongChina
| | - Weitian Li
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHong KongChina
| | - Jinhui Chang
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Jinjiang Technology and Innovation Research InstituteQuanzhouChina
- Research Institute for Future FoodThe Hong Kong Polytechnic UniversityHong KongChina
- Bo InnoHealth Biotechnology Company Limited, Hong Kong Science ParkHong KongChina
| |
Collapse
|
6
|
Chen H, Zhang Y, Lee MY, Liu Z. The key structure and self-stabilization mechanism of water-soluble interfacial squalene-hopene cyclase. Int J Biol Macromol 2025; 305:141340. [PMID: 39986529 DOI: 10.1016/j.ijbiomac.2025.141340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The water insolubility and structural instability of squalene-hopene cyclase (SHC), a membrane-bound interfacial enzyme, pose significant challenges for their use in industrial applications. The membrane-bound nature results in low enzyme yield, cumbersome processes and increased costs. Here, a novel water-soluble catalyst, SaSHC (EC: 5.4.99.17), was discovered from Streptomyces albolongus. This study clearly elucidates its water-soluble structural basis and develop a model for enhancing the water solubility of SHC. The key region, motif 2, contains poly-positively charged amino acids and outward self-anchored structure. The former enhances the electrostatic interaction with the phospholipid head, which makes SaSHC easily dissociated from the cell membrane. And the later ensures the open conformation of the membrane-bound domain. Base on the that, the "outward self-anchored structure dominated-high electrostatic interaction and hydrophobic interaction" (OSA-HELH) model is proposed and applied to optimization SaSHC and AaSHC (from Alicyclobacillus acidocaldarius, tightly bound to the cell membrane). Excitingly, the catalytic efficiency of the SaSHC-L274K was increased by 34.18 %, and mutant AaSHCm2 (AaSHC's motif 2 is replaced by the SaSHC's motif 2) turned into a water-soluble enzyme. In the 100 mL scale-up experiment, the SaSHC-L274K required only 0.04 % Tween 80 to convert 87.82 % squalene, which is an environment-friendly hopene production mode.
Collapse
Affiliation(s)
- Huibin Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Yinan Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Man Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Zhen Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
7
|
Ang X, Chen H, Xiang J, Wei F, Quek SY. Preparation, Digestion, and Storage of Microencapsulated Nervonic Acid-Enriched Structured Phosphatidylcholine. Molecules 2025; 30:2007. [PMID: 40363811 PMCID: PMC12073651 DOI: 10.3390/molecules30092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
This study focuses on the encapsulation of nervonic acid-enriched structured phospholipid (NA-enriched SPL) by analysing its physical and chemical properties. Wall materials for encapsulation were initially screened, with whey protein isolate and maltodextrin exhibiting the most favourable characteristics. Optimisation of encapsulation parameters determined that a core-to-wall ratio of 1:3 provided the highest physical stability. Encapsulated samples underwent in vitro digestion, where MC-FD exhibited the highest digestibility (79.54%), followed by CV-E (72.1%) and NA-enriched SPL (29.82%). Storage stability was assessed over 90 days at 4 °C, 25 °C, and 45 °C by monitoring particle size, zeta potential, polydispersity index, microscopy, fatty acid composition, and primary and secondary lipid oxidation. MC-FD demonstrated superior stability, maintaining its physical and chemical properties, particularly at 4 °C. In contrast, CV-E showed the lowest physical stability, with significant changes in appearance and increased particle size at elevated temperatures (25 °C and 45 °C).
Collapse
Affiliation(s)
- Xun Ang
- Food Science Programme, School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Riddet Institute, Centre for Research Excellence, Palmerston North 4474, New Zealand
| | - Hong Chen
- The Key Lab for Biological Sciences of Oil Crops, Ministry of Agriculture-Hubei Key Laboratory of Lipid Chemistry and Nutrition, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.C.); (F.W.)
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445002, China;
| | - Fang Wei
- The Key Lab for Biological Sciences of Oil Crops, Ministry of Agriculture-Hubei Key Laboratory of Lipid Chemistry and Nutrition, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.C.); (F.W.)
| | - Siew Young Quek
- Food Science Programme, School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Riddet Institute, Centre for Research Excellence, Palmerston North 4474, New Zealand
| |
Collapse
|
8
|
Sil S, Mishra K, Pal SK. Liquid Crystal Biosensors: An Overview of Techniques to Monitor Enzyme Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4959-4975. [PMID: 39963995 DOI: 10.1021/acs.langmuir.4c04395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Liquid crystals (LCs) have transformed the world of optoelectronic displays and are now recognized as useful soft materials for a broad range of biomedical applications. Combination of smart sensors with label-free imaging offers intriguing prospects for point-of-care diagnostics. Here, we outline a sophisticated collage of the most important discoveries that show how LC biosensors can be used to monitor different enzymatic activities for the diagnosis of specific disease biomarkers or infections in body fluids, cellular milieu, and clinical samples. In living organisms, enzymes have a primary regulatory role in both accelerating and controlling metabolic reactions. We mention the ubiquitous techniques that are used to fabricate LC-based enzyme biosensors in attaining specific strategies along with greater sensitivity for the detection of clinically important biomolecules.
Collapse
Affiliation(s)
- Soma Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli 140306, India
| | - Kirtika Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli 140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli 140306, India
| |
Collapse
|
9
|
Sabi GJ, de Souza L, Abellanas-Perez P, Tardioli PW, Mendes AA, Rocha-Martin J, Fernandez-Lafuente R. Enzyme loading in the support and medium composition during immobilization alter activity, specificity and stability of octyl agarose-immobilized Eversa Transform. Int J Biol Macromol 2025; 295:139667. [PMID: 39793798 DOI: 10.1016/j.ijbiomac.2025.139667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Eversa Transform (ETL) was immobilized on octyl agarose beads at two different enzymes loadings (1 mg/g and 15 mg/g) under 18 different conditions, including different pH values, buffers, additives (different solvents, Ca2+, NaCl). Their activity was analyzed at pH 5 and 7 with p-nitrophenyl butyrate and at pH 5 with triacetin, determining also its stability at pH 5 and 7 (in different media). Ca2+ stabilized ETL biocatalysts while phosphate destabilized them. The overloaded biocatalysts were generally less stable and with a lower specific activity than the lowly loaded biocatalyst. Results show that enzyme activity (even by a 3 fold factor) and stability of the immobilized enzyme may be tailored by controlling the immobilization conditions, but the effects of the immobilization conditions on activity depend on the substrate and conditions of activity determination, the effects on stability depend on the inactivation conditions. Moreover, the enzyme loading of the biocatalysts defines the effects of the immobilization conditions, and there are clear interactions between immobilization conditions (e.g., immobilization pH determines the effect of the presence of NaCl). These suggest that the extrapolation of the results obtained with one substrate under one condition to other conditions can lead to wrong decisions.
Collapse
Affiliation(s)
- Guilherme J Sabi
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Institute of Chemistry, Federal University of Alfenas, MG, 37130-001 Alfenas, Brazil
| | - Leonardo de Souza
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Graduate Program in Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rod. Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain
| | - Paulo W Tardioli
- Graduate Program in Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rod. Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, MG, 37130-001 Alfenas, Brazil
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
10
|
Lima S, Biundo A, García-López EI, Marcì G, Caporusso A, Caramia P, Gorgoglione R, Agrimi G, Pisano I, Scargiali F, Caputo G. Production of Hydroxy Fatty Acids and 5-Hydroxy Methyl Furfural from Microalgal Biomass: An Integrated Biorefinery Perspective Involving Chemical and Enzymatic Conversion. ACS OMEGA 2025; 10:6735-6744. [PMID: 40028063 PMCID: PMC11866000 DOI: 10.1021/acsomega.4c08570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 03/05/2025]
Abstract
A novel biorefinery process utilizing microalgal biomass has been developed, focusing on the enzymatic biotransformation of microalgal fatty acids in hydroxy fatty acids (HFAs) and the chemical conversion of the cellular debris to 5-hydroxymethyl furfural (5-HMF). First, the process was demonstrated using the dry biomass of the microalgal strains Chlorella sp. CW2, and Chlorella sp. Barcarello and Nannochloropsis gaditana obtained a C18:1 substrate reduction of approximately 68.7, 83.4, and 71.5% and a maximum 5-HMF yield of 28.6 ± 1.4, 35.2 ± 5.4, and 25.2 ± 1.5%, respectively. Further optimization of the process was performed on the wet biomass of the microalga Chlorella sp. CW2 by using intensified process operations, achieving the production of double-functionalized HFAs. The described process yields building blocks for the chemical industry starting from microalgal biomass, potentially sourced from the biological treatment of wastewaters. The enhanced sustainability and reduced operational costs provided by this innovative biorefinery approach represent significant advancements in the microalgal industry.
Collapse
Affiliation(s)
- Serena Lima
- Department
of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy
| | - Antonino Biundo
- Department
of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
- REWOW
srl, via Matarrese 10, 70124 Bari, Italy
| | | | - Giuseppe Marcì
- Department
of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy
| | - Antonio Caporusso
- Department
of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Pietro Caramia
- Department
of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Ruggiero Gorgoglione
- Department
of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Gennaro Agrimi
- Department
of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Isabella Pisano
- Department
of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Francesca Scargiali
- Department
of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy
| | - Giuseppe Caputo
- Department
of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy
| |
Collapse
|
11
|
Singh B, Jana AK, Jana MM. Bioconversion of mustard oil cake for production of lipase, optimization and direct immobilization from solid-state fermentation extract. Prep Biochem Biotechnol 2025:1-14. [PMID: 39873630 DOI: 10.1080/10826068.2025.2453729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Fungal lipases are the leading industrial biocatalyst due to their broad applications, but high cost limits their commercial usage. The low-cost agri-residues substrates can reduce the cost of lipase production. However, the compatibility of agri-residue with fungal species, recovery process of lipase and stability of the enzyme are crucial steps. The aim of the present work was optimization of lipase production from a suitable combination of fungal culture with a locally available vegetable oilseed cake (mustard/groundnut/almond/cottonseed) in solid-state fermentation process and its direct immobilization. The enzyme produced using selected combination of Rhizopus oryzae and mustard oilseed cake was optimized by Plackett-Burman design, one-factor-at-a-time and central composite design (CCD). The highest enzyme activity of 25.08 U/gds was obtained by CCD at urea 2.11% w/w, inoculum size 1.18% v/w, and moisture content 69.99% w/w. The crude enzyme from the extract was immobilized on functionalized magnetic nanoparticles with the results of protein loading 68.88 ± 3.54 µg/mg of MNPs and activity recovery of 60.33 ± 3.03%. This study can be helpful to explore the suitability of locally available agri-residue for production of lipase and utilization of enzyme in different industrial applications.
Collapse
Affiliation(s)
- Bhim Singh
- Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, India
| | - Asim Kumar Jana
- Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, India
| | - Mithu Maiti Jana
- Department of Physical Science, Sant Baba Bagh Singh University, Jalandhar, Punjab, India
| |
Collapse
|
12
|
Bihola A, Chaudhary MB, Bumbadiya MR, Suvera P, Adil S. Technological innovations in margarine production: Current trends and future perspectives on trans-fat removal and saturated fat replacement. Compr Rev Food Sci Food Saf 2025; 24:e70088. [PMID: 39699296 DOI: 10.1111/1541-4337.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
The margarine market is growing globally due to its lower cost, ease of availability, large-scale commercialization, and expanding market in the bakery and confectionary industries. Butter contains greater amounts of saturated fat and has been associated with cardiovascular diseases. The trans fats generated through the hydrogenation process have several adverse impacts on human health, such as the risk of atherosclerosis, coronary heart disease, postmenopausal breast cancer, vision and neurological system impairment, type II diabetes, and obesity. Therefore, it is important to formulate margarine, low in saturated and trans fats using innovative technologies such as novel hydrogenation, interesterification techniques, and oleogel technology. By utilizing these technologies and oils with a healthy lipid profile, margarine manufacturers are able to produce healthier margarine. This review covers recent technological advancements in margarine, which include various hydrogenation techniques such as high-voltage atmospheric cold plasma hydrogenation, microwave plasma hydrogenation, dielectric-barrier discharge plasma hydrogenation, and interesterification based on supercritical CO2 systems. In addition, the application of interesterified oil and oleogel (structured vegetable oils) in the production of margarine low in saturated fat is comprehensively discussed, with emphasis on the utilization of unconventional sources of oils such as tiger nut oil, Moringa oleifera seed oil, Irvingia gabonensis seed fat, winged bean oil, and hemp seed oil. The novel hydrogenation techniques can hydrogenate oils without formation of trans fats, and such hydrogenated oils could be employed in the formulation of trans-fat-free margarine. Interesterified oil treated with supercritical CO2 was employed in healthy margarine development. Using the oleogel technique, various unconventional oil sources can be used in margarine formulations. The incorporation of oleogel in margarine makes it possible to improve the lipid profile of margarine due to a reduction in saturated fat content. All of these novel techniques have the potential to revolutionize the margarine industry by enabling the production of high-quality, healthy margarine.
Collapse
Affiliation(s)
- Ankit Bihola
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - M B Chaudhary
- ICAR-Indian Agricultural Research Institute, Assam, India
| | - M R Bumbadiya
- ICAR-National Research Center on Camel, Bikaner, Rajasthan, India
| | - Priyanka Suvera
- Department of Food Technology, Sardarkrushinagar Dantiwada Agricultural University, Dantiwada, Gujarat, India
| | - Shaikh Adil
- Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
13
|
Brand A, Silva A, Andriolo C, Mellinger C, Uekane T, Garrett R, Rezende C. Bioaccessibility of Cafestol from Coffee Brew: A Metabolic Study Employing an In Vitro Digestion Model and LC-HRMS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27876-27883. [PMID: 39630117 DOI: 10.1021/acs.jafc.4c06411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cafestol is an ent-kaurene skeleton diterpene that is present in coffee beans and brews. Although several biological activities have been described in the literature for cafestol, such as hypercholesterolemic, anti-inflammatory, anticerous, and antidiabetic effects, its metabolism within the human body remains poorly understood. Therefore, this study aimed to quantify cafestol in boiled coffee brew, assess its bioaccessibility using a static in vitro digestion model, and investigate the metabolites formed during the digestion process using liquid chromatography coupled to high-resolution mass spectrometry. Cafestol content in the boiled coffee brew ranged from 127.47 to 132.65 mg L-1. The bioaccessibility of cafestol from boiled coffee brew using the in vitro digestion model was 93.65%; additionally, in the intestinal phase, cafestol was mainly found in its alcohol form. Additionally, a novel carboxylic acid derivative metabolite from cafestol with m/z 331.1909 [M + H]+ formed in the oral digestion phase is proposed. This metabolite was also detected in other digestion phases. Thus, this is the first article to investigate the metabolism of cafestol during digestion using an in vitro digestion model. The results indicate that cafestol is bioaccessible, is available to absorption, in its alcohol form, and suffers an oxidation reaction during the oral phase of digestion.
Collapse
Affiliation(s)
- Ana Brand
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| | - Ana Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| | | | | | - Thaís Uekane
- Departamento de Bromatologia, Escola de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24241-002, Brasil
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| | - Claudia Rezende
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| |
Collapse
|
14
|
Pilati S, Wild K, Gumiero A, Holdermann I, Hackmann Y, Serra MD, Guella G, Moser C, Sinning I. Vitis vinifera Lipoxygenase LoxA is an Allosteric Dimer Activated by Lipidic Surfaces. J Mol Biol 2024; 436:168821. [PMID: 39424098 DOI: 10.1016/j.jmb.2024.168821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Lipoxygenases catalyze the peroxidation of poly-unsaturated fatty acid chains either free or esterified in membrane lipids. Vitis vinifera LoxA is transcriptionally induced at ripening onset and localizes at the inner chloroplast membrane where it is responsible for galactolipid regiospecific mono- and di-peroxidation. Here we present a kinetic and structural characterization of LoxA. Our X-ray structures reveal a constitutive dimer with detergent induced conformational changes affecting substrate binding and catalysis. In a closed conformation, a LID domain prevents substrate access to the catalytic site by steric hindrance. Detergent addition above the CMC destabilizes the LID and opens the dimer with both catalytic sites accessible from the same surface framed by the PLAT domains. As a consequence, detergent molecules occupy allosteric sites in the PLAT/catalytic domain interface. These structural changes are mirrored by increased enzymatic activity and positive cooperativity when the substrate is provided in micelles. The ability to interact with micelles is lost upon dimer destabilization by site-directed mutagenesis as assessed by tryptophan fluorescence. Our data allow to propose a model for protein activation at the membrane, classifying LoxA as an interfacial enzyme acting on fatty acid chains directly from the membrane similar to mammalian 15-LOX and 5-LOX.
Collapse
Affiliation(s)
- Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Andrea Gumiero
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Iris Holdermann
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Yvonne Hackmann
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mauro Dalla Serra
- Institute of Biophysics, CNR Unit at Trento, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Graziano Guella
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Jensen SJ, Cuthbert BJ, Garza-Sánchez F, Helou CC, de Miranda R, Goulding CW, Hayes CS. Advanced glycation end-product crosslinking activates a type VI secretion system phospholipase effector protein. Nat Commun 2024; 15:8804. [PMID: 39394186 PMCID: PMC11470151 DOI: 10.1038/s41467-024-53075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Advanced glycation end-products (AGE) are a pervasive form of protein damage implicated in the pathogenesis of neurodegenerative disease, atherosclerosis and diabetes mellitus. Glycation is typically mediated by reactive dicarbonyl compounds that accumulate in all cells as toxic byproducts of glucose metabolism. Here, we show that AGE crosslinking is harnessed to activate an antibacterial phospholipase effector protein deployed by the type VI secretion system of Enterobacter cloacae. Endogenous methylglyoxal reacts with a specific arginine-lysine pair to tether the N- and C-terminal α-helices of the phospholipase domain. Substitutions at these positions abrogate both crosslinking and toxic phospholipase activity, but in vitro enzyme function can be restored with an engineered disulfide that covalently links the N- and C-termini. Thus, AGE crosslinking serves as a bona fide post-translation modification to stabilize phospholipase structure. Given the ubiquity of methylglyoxal in prokaryotic and eukaryotic cells, these findings suggest that glycation may be exploited more generally to stabilize other proteins. This alternative strategy to fortify tertiary structure could be particularly advantageous in the cytoplasm, where redox potentials preclude disulfide bond formation.
Collapse
Affiliation(s)
- Steven J Jensen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Bonnie J Cuthbert
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Colette C Helou
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, 92697, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, 93106, USA.
| |
Collapse
|
16
|
Sun MZ, Kim DY, Baek Y, Lee HG. The Effect of Multilayer Nanoemulsion on the In Vitro Digestion and Antioxidant Activity of β-Carotene. Antioxidants (Basel) 2024; 13:1218. [PMID: 39456471 PMCID: PMC11504132 DOI: 10.3390/antiox13101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The objectives of this study were to design multilayer oil-in-water nanoemulsions using a layer-by-layer technique to enhance the stability of β-carotene and evaluate its effect on in vitro release and antioxidant activity. To prepare β-carotene-loaded multilayer nanoemulsions (NEs), a primary NE (PRI-NE) using Tween 20 was coated with chitosan (CS) for the secondary NE (SEC-CS), and with dextran sulfate (DS) and sodium alginate (SA) for the two types of tertiary NEs (TER-DS, TER-SA). The multilayer NEs ranged in particle size from 92 to 110 nm and exhibited high entrapment efficiency (92-99%). After incubation in a simulated gastrointestinal tract model, the release rate of free fatty acids decreased slightly after coating with CS, DS, and SA. The bioaccessibility of β-carotene was 7.02% for the PRI-NE, 7.96% for the SEC-CS, 10.88% for the TER-DS, and 10.25% for the TER-SA. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging abilities increased by 1.2 times for the multilayer NEs compared to the PRI-NE. In addition, the cellular antioxidant abilities improved by 1.8 times for the TER-DS (87.24%) compared to the PRI-NE (48.36%). Therefore, multilayer nanoemulsions are potentially valuable techniques to improve the stability, in vitro digestion, and antioxidant activity of β-carotene.
Collapse
Affiliation(s)
- Mei Zi Sun
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (M.Z.S.); (Y.B.)
| | - Do-Yeong Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (M.Z.S.); (Y.B.)
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (M.Z.S.); (Y.B.)
| |
Collapse
|
17
|
Li D, Mei L, Ding X, Zhou D. Preparation of highly stable immobilized Candida antarctica lipase B (CALB) through adjusting the surface properties of carrier: Preparation, characterization and performance evaluation. Int J Biol Macromol 2024; 280:136356. [PMID: 39374721 DOI: 10.1016/j.ijbiomac.2024.136356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
The stability of the immobilized lipase is the key factor that determines the economy and feasibility of its industrial application. Here, two robust immobilized Candida antarctica lipase B (CALB) were prepared through adjusting the surface properties of ECR1030 resin. Silane coupling agent (SCA) and dialdehyde cellulose (DAC) were employed to modify the carrier surface. Contact angle measurement showed that the hydrophobicity of the modified carrier increased first, and then decreased with the increase of the chain length of SCA. FTIR results showed that Si-O-Si bond and aldehyde group were attached to ECR1030, respectively, indicating that the ECR1030 resin was successfully modified. Meanwhile, the NH and CN bond were observed in the corresponding immobilized CALB, suggesting CALB was immobilized onto the modified carriers. The effects of immobilization conditions on CALB immobilization was further investigated, and the C8-ECR1030-CALB and DAC-ECR1030-CALB with the activity of 12,736 U/g and 11,962 U/g were obtained. Moreover, the stability of the immobilized lipases was evaluated and compared with the commercial Novozym 435. The C8-ECR1030-CALB and DAC-ECR1030-CALB exhibited comparable or superior stability to Novozym 435 and showed better deacidification effect than Novozym 435. This study paves road for further study involving preparation of highly stable immobilized lipase.
Collapse
Affiliation(s)
- Daoming Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shannxi, China.
| | - Ling Mei
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shannxi, China
| | - Xiaogang Ding
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shannxi, China
| | - Duan Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shannxi, China.
| |
Collapse
|
18
|
Zhang J, Chen J, Sha Y, Deng J, Wu J, Yang P, Zou F, Ying H, Zhuang W. Water-mediated active conformational transitions of lipase on organic solvent interfaces. Int J Biol Macromol 2024; 277:134056. [PMID: 39074702 DOI: 10.1016/j.ijbiomac.2024.134056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
When it comes to enzyme stability and their application in organic solvents, enzyme biocatalysis has emerged as a popular substitute for conventional chemical processes. However, the demand for enzymes exhibiting improved stability remains a persistent challenge. Organic solvents can significantly impacts enzyme properties, thereby limiting their practical application. This study focuses on Lipase Thermomyces lanuginose, through molecular dynamics simulations and experiments, we quantified the effect of different solvent-lipase interfaces on the interfacial activation of lipase. Revealed molecular views of the complex solvation processes through the minimum distance distribution function. Solvent-protein interactions were used to interpret the factors influencing changes in lipase conformation and enzyme activity. We found that water content is crucial for enzyme stability, and the optimum water content for lipase activity was 35 % in the presence of benzene-water interface, which is closely related to the increase of its interfacial activation angle from 78° to 102°. Methanol induces interfacial activation in addition to significant competitive inhibition and denaturation at low water content. Our findings shed light on the importance of understanding solvent effects on enzyme function and provide practical insights for enzyme engineering and optimization in various solvent-lipase interfaces.
Collapse
Affiliation(s)
- Jihang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jiale Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Yu Sha
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jiawei Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Pengpeng Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Fengxia Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
19
|
Chabni A, Pardo de Donlebún B, Bañares C, Torres CF. In vitro digestion study comparing a predigested glycerolysis product versus long-chain polyunsaturated fatty acid-rich oils (LCPUFA) as a strategy for administering LCPUFA to preterm neonates. Clin Nutr ESPEN 2024; 64:75-83. [PMID: 39303783 DOI: 10.1016/j.clnesp.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/13/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND & AIMS Maintaining an adequate supply of arachidonic acid (ARA) and docosahexaenoic acid (DHA) is essential for optimal growth of preterm infants. This study aims to evaluate and compare the digestibility and bioaccessibility of ARA and DHA oils compared to their predigested product through an in vitro digestion model. METHODS An in vitro gastrointestinal digestion model was used in two stages: gastric digestion and intestinal digestion. Samples of two polyunsaturated rich oils (ARA and DHA oils) and their predigested product (2:1, ARA: DHA) produced by enzymatic glycerolysis have been digested for 120 min. The final digestion product obtained was composed of three phases: an upper oily phase (OP) containing the undigested species, an intermediate micellar phase (MP) containing digested and bioaccessible lipids, and a precipitate phase (PP) with insoluble compounds. The reaction was monitored by taking aliquots and their subsequent lipid extraction and analysis. RESULTS Poorer digestibility for ARA and DHA oils was observed based on the percentage of the oily phase (26.7% and 20%, respectively) found compared to the glycerolysis product (GP) oily phase (13.9%). The highest micellar phase was found in the GP (approx. 83%). On the other hand, the monoglyceride (MAG) content was lower in the digestion product (DP) from ARA and DHA oils, 4.3% and 9.2%, respectively, compared to the MAG observed in the DP of GP (15%). CONCLUSION Considering the percentage of oily phase, micellar phase, and the MAG content, it can be concluded that the GP is more digestible and ARA and DHA are more bioaccessible than in its precursor oils.
Collapse
Affiliation(s)
- Assamae Chabni
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/ Nicolas Cabrera 9, 28049, Madrid, Spain; Department of Applied Physical Chemistry, Sección Departamental de Ciencias de la Alimentación, Faculty of Science, Autonomous University of Madrid, 28049, Madrid, Spain
| | - Blanca Pardo de Donlebún
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/ Nicolas Cabrera 9, 28049, Madrid, Spain; Department of Applied Physical Chemistry, Sección Departamental de Ciencias de la Alimentación, Faculty of Science, Autonomous University of Madrid, 28049, Madrid, Spain
| | - Celia Bañares
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/ Nicolas Cabrera 9, 28049, Madrid, Spain; Department of Applied Physical Chemistry, Sección Departamental de Ciencias de la Alimentación, Faculty of Science, Autonomous University of Madrid, 28049, Madrid, Spain
| | - Carlos F Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/ Nicolas Cabrera 9, 28049, Madrid, Spain; Department of Applied Physical Chemistry, Sección Departamental de Ciencias de la Alimentación, Faculty of Science, Autonomous University of Madrid, 28049, Madrid, Spain.
| |
Collapse
|
20
|
Waggett A, Pfaendtner J. Hydrophobic Residues Promote Interfacial Activation of Candida rugosa Lipase: A Study of Rotational Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39141441 DOI: 10.1021/acs.langmuir.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Microbial lipases constitute a class of biocatalysts with the ability to cleave ester linkages of long-chain triglycerides. This property makes them particularly attractive for industrial applications ranging from food processing to pharmaceutical preparation. Among such enzymes, Candida rugosa lipase (CRL) is one of the most frequently used in biotransformation. A notable feature of CRL, among many lipases, is its propensity for interfacial activation: these enzymes exhibit elevated catalytic rates when acting at the interface between aqueous and hydrophobic phases. Notably, this phenomenon can be attributed to the presence of a mobile lid domain, which in its closed state occludes the enzyme active site. To advance our understanding of interfacial activation, we explore the dynamics of CRL rotation at the octane-water interface in this work. To do so, we employ molecular dynamics and umbrella sampling to evaluate the free energy of rotation of the enzyme at the interface. We identify a global minimum in the rotational landscape that coincides with lid opening at the interface. Additionally, we investigate the role of surface residues outside the lid domain as they serve to instigate rotation of the lid toward the aqueous phase. In doing so, we identify a patch of leucine residues which when mutated to glycine impose a barrier to rotation that maintains the enzyme in the inactive (closed lid) state on the order of 1 μs. Importantly, this study presents a novel quantification of the rotational free energy corresponding to CRL lid opening at the octane-water interface. The accompanying mutagenesis study likewise clarifies the role of hydrophobic surface residues in the transition. As such, this work provides valuable insight into the phenomenon of interfacial activation that might open up new avenues for manipulating the microenvironment of industrially relevant lipases, affording enhanced control over the enzyme state.
Collapse
Affiliation(s)
- Ava Waggett
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
21
|
Ma H, Liu X, Nobbs AH, Mishra A, Patil AJ, Mann S. Protocell Flow Reactors for Enzyme and Whole-Cell Mediated Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404607. [PMID: 38762764 DOI: 10.1002/adma.202404607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The design and construction of continuous flow biochemical reactors comprising immobilized biocatalysts have generated great interest in the efficient synthesis of value-added chemicals. Living cells use compartmentalization and reaction-diffusion processes for spatiotemporal regulation of biocatalytic reactions, and implementing these strategies into continuous flow reactors can offer new opportunities in reactor design and application. Herein, the fabrication of protocell-based continuous flow reactors for enzyme and whole-cell mediated biocatalysis is demonstrated. Semipermeable membranized coacervate vesicles are employed as model protocells that spontaneously sequester enzymes or accumulate living bacteria to produce embodied microreactors capable of single- or multiple-step catalytic reactions. By packing millions of the enzyme/bacteria-containing coacervate vesicles in a glass column, a facile, cost-effective, and modular methodology capable of performing oxidoreductase, peroxidase and lipolytic reactions, enzyme-mediated L-DOPA synthesis, and whole-cell glycolysis under continuous flow conditions, is demonstrated. It is shown that the protocell-nested enzymes and bacterial cells exhibit enhanced activities and stability under deleterious operating conditions compared with their non-encapsulated counterparts. These results provide a step toward the engineering of continuous flow reactors based on cell-like microscale agents and offer opportunities in the development of green and sustainable industrial bioprocessing.
Collapse
Affiliation(s)
- Huan Ma
- Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Xiayi Liu
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, UK
| | - Angela H Nobbs
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, UK
| | - Ananya Mishra
- Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Avinash J Patil
- Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Stephen Mann
- Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
22
|
Jessernig A, Anthis AH, Vonna E, Rosendorf J, Liska V, Widmer J, Schlegel AA, Herrmann IK. Early Detection and Monitoring of Anastomotic Leaks via Naked Eye-Readable, Non-Electronic Macromolecular Network Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400673. [PMID: 38775058 PMCID: PMC11304232 DOI: 10.1002/advs.202400673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Indexed: 08/09/2024]
Abstract
Anastomotic leakage (AL) is the leaking of non-sterile gastrointestinal contents into a patient's abdominal cavity. AL is one of the most dreaded complications following gastrointestinal surgery, with mortality rates reaching up to 27%. The current diagnostic methods for anastomotic leaks are limited in sensitivity and specificity. Since the timing of detection directly impacts patient outcomes, developing new, fast, and simple methods for early leak detection is crucial. Here, a naked eye-readable, electronic-free macromolecular network drain fluid sensor is introduced for continuous monitoring and early detection of AL at the patient's bedside. The sensor array comprises three different macromolecular network sensing elements, each tailored for selectivity toward the three major digestive enzymes found in the drainage fluid during a developing AL. Upon digestion of the macromolecular network structure by the respective digestive enzymes, the sensor produces an optical shift discernible to the naked eye. The diagnostic efficacy and clinical applicability of these sensors are demonstrated using clinical samples from 32 patients, yielding a Receiver Operating Characteristic Area Under the Curve (ROC AUC) of 1.0. This work has the potential to significantly contribute to improved patient outcomes through continuous monitoring and early, low-cost, and reliable AL detection.
Collapse
Affiliation(s)
- Alexander Jessernig
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Particles‐Biology Interactions LaboratoryDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Alexandre H.C. Anthis
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Particles‐Biology Interactions LaboratoryDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Emilie Vonna
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Jachym Rosendorf
- Department of SurgeryFaculty of Medicine in PilsenCharles UniversityAlej Svobody 923/80Pilsen32300Czech Republic
- Biomedical CenterFaculty of Medicine in PilsenCharles UniversityAlej Svobody 1655/76Pilsen32300Czech Republic
| | - Vaclav Liska
- Department of SurgeryFaculty of Medicine in PilsenCharles UniversityAlej Svobody 923/80Pilsen32300Czech Republic
- Biomedical CenterFaculty of Medicine in PilsenCharles UniversityAlej Svobody 1655/76Pilsen32300Czech Republic
| | - Jeannette Widmer
- Department of Surgery and TransplantationSwiss HPB CentreUniversity Hospital ZurichZürich8091Switzerland
| | - Andrea A. Schlegel
- Transplantation CenterDigestive Disease and Surgery Institute and Department of Immunity and InflammationLerner Research InstituteCleveland Clinic9620 Carnegie AveClevelandOH44106USA
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Particles‐Biology Interactions LaboratoryDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- The Ingenuity LabUniversity Hospital BalgristBalgrist CampusForchstrasse 340Zurich8008Switzerland
- Faculty of MedicineUniversity of ZurichRämistrasse 74Zürich8006Switzerland
| |
Collapse
|
23
|
Yin H, Zhu J, Zhong Y, Wang D, Deng Y. Kinetic and thermodynamic-based studies on the interaction mechanism of novel R. roxburghii seed peptides against pancreatic lipase and cholesterol esterase. Food Chem 2024; 447:139006. [PMID: 38492305 DOI: 10.1016/j.foodchem.2024.139006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Pancreatic lipase (PL) and cholesterol esterase (CE) are vital digestive enzymes that regulate lipid digestion. Three bioactive peptides (LFCMH, RIPAGSPF, YFRPR), possessing enzyme inhibitory activities, were identified in the seed proteins of R. roxburghii. It is hypothesized that these peptides could inhibit the activities of these enzymes by binding to their active sites or altering their conformation. The results showed that LFCMH exhibited superior inhibitory activity against these enzymes compared to the other peptides. The inhibition mechanisms of the three peptides were identified as either competitive or mixed, according to inhibition models. Further studies have shown that peptides could bind to the active sites of enzymes, thus affecting their spatial conformation and restricting substrate entry into the active site. Molecular simulation further proved that hydrogen bonds and hydrophobic interactions played a vital role in the binding of peptides to enzymes. This study enriches our understanding of interaction mechanisms of peptides on PL and CE.
Collapse
Affiliation(s)
- Hao Yin
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Jiao Tong University Yunnan (Dali) Research Institute, Dali, Yunnan 671000, China
| | - Jiangxiong Zhu
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Zhong
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Danfeng Wang
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Jiao Tong University Yunnan (Dali) Research Institute, Dali, Yunnan 671000, China.
| |
Collapse
|
24
|
Li X, Zhang H, Mao X. Liposomes delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:257-300. [PMID: 39218504 DOI: 10.1016/bs.afnr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural bioactive compounds with antioxidant, antimicrobial, anticancer, and other biological activities are vital for maintaining the body's physiological functions and enhancing immunity. These compounds have great potential as nutritional therapeutic agents, but they can be limited due to their poor flavor, color, unstable nature, and poor water solubility, and degradation by gastrointestinal enzymes. Liposomes, as ideal carriers, can encapsulate both water-soluble and fat-soluble nutrients, enhance the bioavailability of functional substances, promote the biological activity of functional substances, and control the release of nutrients. Despite their potential, liposomes still face obstacles in nutrient delivery. Therefore, the design of liposomes for special needs, optimization of the liposome preparation process, enhancement of liposome encapsulation efficiency, and industrial production are key issues that must be addressed in order to develop food-grade liposomes. Moreover, the research on surface-targeted modification and surface functionalization of liposomes is valuable for expanding the scope of application of liposomes and achieving the release of functional substances from liposomes at the appropriate time and site. The establishment of in vivo and in vitro digestion models of nutrient-loaded liposomes, in-depth study of gastrointestinal digestive behavior after liposome ingestion, targeted nutrient release, and deciphering the nutritional intervention of human diseases and positive health promotion are promising fields with broad development prospects.
Collapse
Affiliation(s)
- Xuehan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P.R. China.
| |
Collapse
|
25
|
Haitao Y, Yiqian L, Junqiang W, Ning W, Yanfei W, Ziyong C, Tong X, Xiaoyun M, Danyang H, Haozhe M, Zhengyang Y. Disposal and utilization of dead animals during breeding in livestock and poultry farming by means of synthetic microbiota. ENVIRONMENTAL RESEARCH 2024; 252:119010. [PMID: 38685301 DOI: 10.1016/j.envres.2024.119010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The disposal of animal remains resulting from breeding is a significant challenge that impacts the industry's growth. To address the issues with current treatment methods, such as the large space required for corpse storage, and the high energy consumption of pyrolysis. Three strains with high protease and lipase production and one strain with high keratinase production were screened. The virulence genes were evaluated, the synthesis gene clusters of degrading enzymes were mined, secondary metabolites of each strain were analyzed, and the bacterial community with both growth rate and enzyme production ability was developed. Therefore, a microbial degradation method with mild reaction conditions and rapid liquefaction of animal residues was developed. The liquid degradation of four common farm-raised animal residues (sheep, cattle, chickens, and pigs) was tested under laboratory conditions. The results showed that the liquid degradation of animal residues was achieved within 144 h, transforming the months-long anaerobic process of traditional compost fermentation process into a mere 6 days' anaerobic process. N, P, K plant nutrients accounted for 15% of the total matrix, pH value was 5.5-6.7, heavy metal content was less than 0.2 mg L-1. Designed and improved fermentation equipment, produced a 3 m³ fermentation equipment, used in chicken, pig two types of animal residues pilot test. The emissions of greenhouse gases such as CO2 in the entire degradation process were 1.6 × 104 ppm, which was 481 times less than that of composting by 7.7 × 106. This study provides a solution for the treatment of dead livestock and poultry, which has promotional and practical value.
Collapse
Affiliation(s)
- Yue Haitao
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China; School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China.
| | - Luo Yiqian
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Wu Junqiang
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Wang Ning
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Wang Yanfei
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Chu Ziyong
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Xu Tong
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Ma Xiaoyun
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Huang Danyang
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Miao Haozhe
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Yang Zhengyang
- School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| |
Collapse
|
26
|
Vardar-Yel N, Tütüncü HE, Sürmeli Y. Lipases for targeted industrial applications, focusing on the development of biotechnologically significant aspects: A comprehensive review of recent trends in protein engineering. Int J Biol Macromol 2024; 273:132853. [PMID: 38838897 DOI: 10.1016/j.ijbiomac.2024.132853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Lipases are remarkable biocatalysts, adept at catalyzing the breakdown of diverse compounds into glycerol, fatty acids, and mono- and di-glycerides via hydrolysis. Beyond this, they facilitate esterification, transesterification, alcoholysis, acidolysis, and more, making them versatile in industrial applications. In industrial processes, lipases that exhibit high stability are favored as they can withstand harsh conditions. However, most native lipases are unable to endure adverse conditions, making them unsuitable for industrial use. Protein engineering proves to be a potent technology in the development of lipases that can function effectively under challenging conditions and fulfill criteria for various industrial processes. This review concentrated on new trends in protein engineering to enhance the diversity of lipase genes and employed in silico methods for predicting and comprehensively analyzing target mutations in lipases. Additionally, key molecular factors associated with industrial characteristics of lipases, including thermostability, solvent tolerance, catalytic activity, and substrate preference have been elucidated. The present review delved into how industrial traits can be enhanced through directed evolution (epPCR, gene shuffling), rational design (FRESCO, ASR), combined engineering strategies (i.e. CAST, ISM, and FRISM) as protein engineering methodologies in contexts of biodiesel production, food processing, and applications of detergent, pharmaceutics, and plastic degradation.
Collapse
Affiliation(s)
- Nurcan Vardar-Yel
- Department of Medical Laboratory Techniques, Altınbaş University, 34145 İstanbul, Turkey
| | - Havva Esra Tütüncü
- Department of Nutrition and Dietetics, Malatya Turgut Özal University, 44210 Malatya, Turkey
| | - Yusuf Sürmeli
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey.
| |
Collapse
|
27
|
Zhou L, Bian H, Zhang N, Qian W. Real-time tracking of the adsorption of bovine serum albumin on lipid layer and its effect on lipolysis by optical interferometry. Food Chem 2024; 444:138581. [PMID: 38309074 DOI: 10.1016/j.foodchem.2024.138581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
The model proteins bovine serum albumin (BSA) and lipid layer were used to study the effect of proteins on lipolysis. A lipid layer with an interference effect was constructed by loading the triolein into the silica colloidal crystal (SCC) film. The ordered porous layer interferometry (OPLI) system was used to track the changes in lipid layer mass caused by lipase hydrolysis to achieve real-time lipolysis detection. The real-time tracking of the adsorption of BSA on the lipid layer by converting the migration of interference fringes caused by the change of the lipid layer into the optical thickness change (ΔOT). The effect of BSA on the early and late stages of lipolysis was studied, and lipases containing 5 mg/mL BSA degraded the lipid layer 3.4 times faster than lipases containing 0.1 mg/mL BSA in the later stages. This study deepens the understanding of protein-lipid interactions in complex digestive environments.
Collapse
Affiliation(s)
- Lele Zhou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Haixin Bian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Na Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
28
|
Yang M, Su X, Yang J, Lu Z, Zhou J, Wang F, Liu Y, Ma L, Zhai C. A Whole-Process Visible Strategy for the Preparation of Rhizomucor miehei Lipase with Escherichia coli Secretion Expression System and the Immobilization. Microb Cell Fact 2024; 23:155. [PMID: 38802857 PMCID: PMC11129466 DOI: 10.1186/s12934-024-02432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Rhizomucor miehei (RM) lipase is a regioselective lipase widely used in food, pharmaceutical and biofuel industries. However, the high cost and low purity of the commercial RM lipase limit its industrial applications. Therefore, it is necessary to develop cost-effective strategies for large-scale preparation of this lipase. The present study explored the high-level expression of RM lipase using superfolder green fluorescent protein (sfGFP)-mediated Escherichia coli secretion system. RESULTS The sfGFP(-15) mutant was fused to the C-terminus of RM lipase to mediate its secretion expression. The yield of the fusion protein reached approximately 5.1 g/L with high-density fermentation in 5-L fermentors. Unlike conventional secretion expression methods, only a small portion of the target protein was secreted into the cell culture while majority of the fusion protein was still remained in the cytoplasm. However, in contrast to intracellular expression, the target protein in the cytoplasm could be transported efficiently to the supernatant through a simple washing step with equal volume of phosphate saline (PBS), without causing cell disruption. Hence, the approach facilitated the downstream purification step of the recombinant RM lipase. Moreover, contamination or decline of the engineered strain and degradation or deactivation of the target enzyme can be detected efficiently because they exhibited bright green fluorescence. Next, the target protein was immobilized with anion-exchange and macropore resins. Diethylaminoethyl sepharose (DEAE), a weak-basic anion-exchange resin, exhibited the highest bind capacity but inhibited the activity of RM lipase dramatically. On the contrary, RM lipase fixed with macropore resin D101 demonstrated the highest specific activity. Although immobilization with D101 didn't improve the activity of the enzyme, the thermostability of the immobilized enzyme elevated significantly. The immobilized RM lipase retained approximately 90% of its activity after 3-h incubation at 80 °C. Therefore, D101 was chosen as the supporting material of the target protein. CONCLUSION The present study established a highly efficient strategy for large-scale preparation of RM lipase. This innovative technique not only provides high-purity RM lipase at a low cost but also has great potential as a platform for the preparation of lipases in the future.
Collapse
Affiliation(s)
- Mingjun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Xianhui Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Jun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Zhiwen Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
29
|
Rezhdo O, West R, Kim M, Ng B, Saphier S, Carrier RL. Mathematical model of intestinal lipolysis of a long-chain triglyceride. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592066. [PMID: 38746383 PMCID: PMC11092624 DOI: 10.1101/2024.05.01.592066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lipids are an important component of food and oral drug formulations. Upon release into gastrointestinal fluids, triglycerides, common components of foods and drug delivery systems, form emulsions and are digested into simpler amphiphilic lipids (e.g., fatty acids) that can associate with intestinal bile micelles and impact their drug solubilization capacity. Digestion of triglycerides is dynamic and dependent on lipid quantity and type, and quantities of other components in the intestinal environment (e.g., bile salts, lipases). The ability to predict lipid digestion kinetics in the intestine could enhance understanding of lipid impact on the fate of co-administered compounds (e.g., drugs, nutrients). In this study, we present a kinetic model that can predict the lipolysis of emulsions of triolein, a model long-chain triglyceride, as a function of triglyceride amount, droplet size, and quantity of pancreatic lipase in an intestinal environment containing bile micelles. The model is based on a Ping Pong Bi Bi mechanism coupled with quantitative analysis of partitioning of lipolysis products in colloids, including bile micelles, in solution. The agreement of lipolysis model predictions with experimental data suggests that the mechanism and proposed assumptions adequately represent triglyceride digestion in a simulated intestinal environment. In addition, we demonstrate the value of such a model over simpler, semi-mechanistic models reported in the literature. This lipolysis framework can serve as a basis for modeling digestion kinetics of different classes of triglycerides and other complex lipids as relevant in food and drug delivery systems.
Collapse
|
30
|
Wang W, Zhou R, Di S, Mao X, Huang WC. Switchable CO 2-Responsive Janus Nanoparticle for Lipase Catalysis in Pickering Emulsion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9967-9973. [PMID: 38639643 DOI: 10.1021/acs.jafc.4c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The use of convertible immobilized enzyme carriers is crucial for biphasic catalytic reactions conducted in Pickering emulsions. However, the intense mechanical forces during the conversion process lead to enzyme leakage, affecting the stability of the immobilized enzymes. In this study, a CO2-responsive switchable Janus (CrSJ) nanoparticle (NP) was developed using silica NP, with one side featuring aldehyde groups and the other side adsorbing N,N-dimethyldodecylamine. A switchable Pickering emulsion catalytic system for biphasic interface reactions was prepared by covalently immobilizing lipase onto the CrSJ NPs. The CO2-responsive nature of the CrSJ NPs allowed for rapid conversion of the Pickering emulsion, and covalent immobilization substantially reduced lipase leakage while enhancing the stability of the immobilization during the conversion process. Impressively, after repeated transformations, the Pickering emulsion still maintains its original structure. Following 10 consecutive cycles of esterification and hydrolysis reactions, the immobilized enzyme's activity remains at 77.7 and 79.5% of its initial activity, respectively. The Km of the CrSJ catalytic system showed no significant change compared to the free enzyme, while its Vmax values were 1.2 and 1.6 times that of the free enzyme in esterification and hydrolysis reactions, respectively.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Ruoyu Zhou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Simiao Di
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Wen-Can Huang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
31
|
Takiue T, Aratono M. Recent progress in application of surface X-ray scattering techniques to soft interfacial films. Adv Colloid Interface Sci 2024; 325:103108. [PMID: 38364360 DOI: 10.1016/j.cis.2024.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
X-ray reflection (XR) and surface grazing incidence X-ray diffraction GIXD) techniques have traditionally been used to evaluate the structure of soft interfacial films. In recent years, the use of synchrotron radiation and two-dimensional detectors has enabled high resolution and high speed measurements of interfacial films, which makes it possible to evaluate more detailed and complex interfacial film structures and adsorption dynamics. In this review, we will provide an overview of recent progress in structural characterization of simple oil/water interfaces, interfacial films of biologically relevant materials, oil/water interfaces for extraction of rare metal ions, and adsorption of nanoparticles. Examples of the application of time-resolved XR methods and surface sensitive techniques such as GISAXS and surface X-ray fluorescence analysis will also be presented.
Collapse
Affiliation(s)
- Takanori Takiue
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan; Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Makoto Aratono
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
32
|
Altemimi AB, Farag HAM, Salih TH, Awlqadr FH, Al-Manhel AJA, Vieira IRS, Conte-Junior CA. Application of Nanoparticles in Human Nutrition: A Review. Nutrients 2024; 16:636. [PMID: 38474764 DOI: 10.3390/nu16050636] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nanotechnology in human nutrition represents an innovative advance in increasing the bioavailability and efficiency of bioactive compounds. This work delves into the multifaceted dietary contributions of nanoparticles (NPs) and their utilization for improving nutrient absorption and ensuring food safety. NPs exhibit exceptional solubility, a significant surface-to-volume ratio, and diameters ranging from 1 to 100 nm, rendering them invaluable for applications such as tissue engineering and drug delivery, as well as elevating food quality. The encapsulation of vitamins, minerals, and antioxidants within NPs introduces an innovative approach to counteract nutritional instabilities and low solubility, promoting human health. Nanoencapsulation methods have included the production of nanocomposites, nanofibers, and nanoemulsions to benefit the delivery of bioactive food compounds. Nutrition-based nanotechnology and nanoceuticals are examined for their economic viability and potential to increase nutrient absorption. Although the advancement of nanotechnology in food demonstrates promising results, some limitations and concerns related to safety and regulation need to be widely discussed in future research. Thus, the potential of nanotechnology could open new paths for applications and significant advances in food, benefiting human nutrition.
Collapse
Affiliation(s)
- Ammar B Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Halgord Ali M Farag
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Tablo H Salih
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Farhang H Awlqadr
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
| | | | - Italo Rennan Sousa Vieira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| |
Collapse
|
33
|
Scheibel DM, Gitsov IPI, Gitsov I. Enzymes in "Green" Synthetic Chemistry: Laccase and Lipase. Molecules 2024; 29:989. [PMID: 38474502 DOI: 10.3390/molecules29050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Enzymes play an important role in numerous natural processes and are increasingly being utilized as environmentally friendly substitutes and alternatives to many common catalysts. Their essential advantages are high catalytic efficiency, substrate specificity, minimal formation of byproducts, and low energy demand. All of these benefits make enzymes highly desirable targets of academic research and industrial development. This review has the modest aim of briefly overviewing the classification, mechanism of action, basic kinetics and reaction condition effects that are common across all six enzyme classes. Special attention is devoted to immobilization strategies as the main tools to improve the resistance to environmental stress factors (temperature, pH and solvents) and prolong the catalytic lifecycle of these biocatalysts. The advantages and drawbacks of methods such as macromolecular crosslinking, solid scaffold carriers, entrapment, and surface modification (covalent and physical) are discussed and illustrated using numerous examples. Among the hundreds and possibly thousands of known and recently discovered enzymes, hydrolases and oxidoreductases are distinguished by their relative availability, stability, and wide use in synthetic applications, which include pharmaceutics, food and beverage treatments, environmental clean-up, and polymerizations. Two representatives of those groups-laccase (an oxidoreductase) and lipase (a hydrolase)-are discussed at length, including their structure, catalytic mechanism, and diverse usage. Objective representation of the current status and emerging trends are provided in the main conclusions.
Collapse
Affiliation(s)
- Dieter M Scheibel
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
| | - Ioan Pavel Ivanov Gitsov
- Science and Technology, Medtronic Incorporated, 710 Medtronic Parkway, Minneapolis, MN 55432, USA
| | - Ivan Gitsov
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
- Biomedical and Chemical Engineering Department, Syracuse University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse, NY 13210, USA
| |
Collapse
|
34
|
Bao MY, Wang Z, Nuez-Ortín WG, Zhao G, Dehasque M, Du ZY, Zhang ML. Comparison of Lysophospholipids and Bile Acids on the Growth Performance, Lipid Deposition, and Intestinal Health of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2024; 2024:1518809. [PMID: 39555522 PMCID: PMC11003383 DOI: 10.1155/2024/1518809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 11/19/2024]
Abstract
Lysophospholipids (LPLs) and bile acids (BA) are commonly used as emulsifiers in aquaculture. This study investigated the effects of dietary supplementation of LPLs or BA on the growth performance, lipid deposition, and intestinal health of largemouth juveniles. Fish were randomly allotted into three groups in quadruplicate and fed with a basal diet (CON) or diets containing 300 mg/kg LPLs (LPLs), or 300 mg/kg commercially available BA product (BA) for 8 weeks. The results showed that compared with the control group, LPLs and BA supplemented groups showed a higher weight gain trend, and LPLs supplementation promoted the protein deposition in fish body. Both BA and LPLs supplementations helped to maintain liver health by decreasing the activities of aspartate aminotransferase and alanine aminotransferase in serum. Besides, LPLs supplementation decreased overall lipid deposition in terms of mesenteric fat index and liver lipid content. Furthermore, LPLs supplementation showed unique advantage in improving intestinal barrier, as characterized by the increased villus length and higher expression of the tight junction protein zo-1 expression. LPLs supplementation also increased the alpha diversity index and the abundances of Proteobacteria in the intestinal microbiota which is positively correlated with the abundance of SCFA in the gut. These findings will promote the application of novel feed additives and especially provide a basis for the rational selection of emulsifiers in the aquaculture industry.
Collapse
Affiliation(s)
- Ming-Yang Bao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhe Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | | | - Guiping Zhao
- Adisseo Life Science (Shanghai) Co., Ltd., Shanghai 200241, China
| | | | - Zhen-Yu Du
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
35
|
Fu Y, Zhao S, Ma N, Zhang Y, Cai S. Exploring the Transmembrane Behaviors of Dietary Flavonoids under Intestinal Digestive Products of Different Lipids: Insights into the Structure-Activity Relationship In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:794-809. [PMID: 38131329 DOI: 10.1021/acs.jafc.3c07239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study aimed to investigate the transmembrane transport behavior and structure-activity relationships of various dietary flavonoids in the presence of dietary lipids derived from different sources in vitro. Results revealed that the digestion products of soybean oil (SOED) and lard (LOED) augmented the apparent permeability coefficients of most dietary flavonoids, and SOED exhibited higher transport compared with LOED. The structural properties of flavonoids and the potential interactions between fatty acids in these digestion products and flavonoids may influence the outcomes. 3D quantitative structure-activity relationship analyses revealed that incorporating small-volume groups at position 8 of the A-ring augmented the transmembrane transfer of flavonoids in the LOED system compared with the control group. By contrast, the integration of hydrophobic groups at position 5 of the A-ring and hydrogen bonding acceptor groups at position 6 of the A-ring enhanced the transmembrane transportation of flavonoids in the SOED system. Molecular dynamics simulations revealed that the SOED system may facilitate the interactions with flavonoids to form more stable and compact fatty acid-flavonoid complexes compared to the LOED system. These findings may provide valuable insights into flavonoid absorption to facilitate the development and utilization of functional foods or dietary supplements based on dietary flavonoids.
Collapse
Affiliation(s)
- Yishan Fu
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Shuai Zhao
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Nan Ma
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Yuanyue Zhang
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| |
Collapse
|
36
|
Abellanas-Perez P, Carballares D, Rocha-Martin J, Fernandez-Lafuente R. The effects of the chemical modification on immobilized lipase features are affected by the enzyme crowding in the support. Biotechnol Prog 2024; 40:e3394. [PMID: 37828788 DOI: 10.1002/btpr.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
In this article, we have analyzed the interactions between enzyme crowding on a given support and its chemical modification (ethylenediamine modification via the carbodiimide route and picryl sulfonic (TNBS) modification of the primary amino groups) on the enzyme activity and stability. Lipase from Thermomyces lanuginosus (TLL) and lipase B from Candida antarctica (CALB) were immobilized on octyl-agarose beads at two very different enzyme loadings, one of them exceeding the capacity of the support, one well under this capacity. Chemical modifications of the highly loaded and lowly loaded biocatalysts gave very different results in terms of activity and stability, which could increase or decrease enzyme activity depending on the enzyme support loading. For example, both lowly loaded biocatalysts increased their activity after modification while the effect was the opposite for the highly loaded biocatalysts. Additionally, the modification with TNBS of highly loaded CALB biocatalyst increased its stability while decrease the activity.
Collapse
Affiliation(s)
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | |
Collapse
|
37
|
Morales AH, Hero JS, Ledesma AE, Martínez MA, Navarro MC, Gómez MI, Romero CM. Tuning surface interactions on MgFe 2O 4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization. Int J Biol Macromol 2023; 253:126615. [PMID: 37652323 DOI: 10.1016/j.ijbiomac.2023.126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipase adsorption on solid supports can be mediated by a precise balance of electrostatic and hydrophobic interactions. A suitable fine-tuning could allow the immobilized enzyme to display high catalytic activity. The objective of this work was to investigate how pH and ionic strength fluctuations affected protein-support interactions during immobilization via physical adsorption of a Candida rugosa lipase (CRL) on MgFe2O5. The highest amount of immobilized protein (IP) was measured at pH 4, and an ionic strength of 90 mM. However, these immobilization conditions did not register the highest hydrolytic activity (HA) in the biocatalyst (CRLa@MgFe2O4), finding the best values also at acidic pH but with a slight shift towards higher values of ionic strength around 110 mM. These findings were confirmed when the adsorption isotherms were examined under different immobilization conditions so that the maximum measurements of IP did not coincide with that of HA. Furthermore, when the recovered activity was examined, a strong interfacial hyperactivation of the lipase was detected towards acidic pH and highly charged surrounding environments. Spectroscopic studies, as well as in silico molecular docking analyses, revealed a considerable involvement of surface hydrophobic protein-carrier interactions, with aromatic aminoacids, especially phenylalanine residues, playing an important role. In light of these findings, this study significantly contributes to the body of knowledge and a better understanding of the factors that influence the lipase immobilization process on magnetic inorganic oxide nanoparticle surfaces.
Collapse
Affiliation(s)
- Andrés H Morales
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina.
| | - Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina
| | - Ana E Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE- CONICET), Universidad Nacional de Santiago del Estero, RN 9, km 1125, (4206) Santiago del Estero, Argentina; Universidad Nacional de Santiago del Estero, Facultad de Ciencias Exactas y Tecnologías, Departamento Académico de Química, Av. Belgrano Sur 1912, 4200, Santiago del Estero, Argentina
| | - M Alejandra Martínez
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina; Facultad de Ciencias Exactas yTecnología, UNT. Av. Independencia 1800, San Miguel de Tucumán 4000, Argentina
| | - María C Navarro
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina
| | - María I Gómez
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina.
| |
Collapse
|
38
|
Behera S, Balasubramanian S. Lipase A from Bacillus subtilis: Substrate Binding, Conformational Dynamics, and Signatures of a Lid. J Chem Inf Model 2023; 63:7545-7556. [PMID: 37989487 DOI: 10.1021/acs.jcim.3c01681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Protein-ligand binding studies are crucial for understanding the molecular basis of biological processes and for further advancing industrial biocatalysis and drug discovery. Using computational modeling and molecular dynamics simulations, we investigated the binding of a butyrate ester substrate to the lipase A (LipA) enzyme of Bacillus subtilis. Besides obtaining a close agreement of the binding free energy with the experimental value, the study reveals a remarkable reorganization of the catalytic triad upon substrate binding, leading to increased essential hydrogen bond populations. The investigation shows the distortion of the oxyanion hole in both the substrate-bound and unbound states of LipA and highlights the strengthening of the same in the tetrahedral intermediate complex. Principal component analysis of the unbound ensemble reveals the dominant motion in LipA to be the movement of Loop-1 (Tyr129-Arg142) between two states that cover and uncover the active site, mirroring that of a lid prevalent in several lipases. This lid-like motion of Loop-1 is also supported by its tendency to spontaneously open up at an oil-water interface. Overall, this study provides valuable insights into the impact of substrate binding on the structure, flexibility, and conformational dynamics of the LipA enzyme.
Collapse
Affiliation(s)
- Sudarshan Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| |
Collapse
|
39
|
Nur N, Suwanto A, Meryandini A, Suhartono MT, Puspitasari E, Kim HK. Cloning and characterization of an acidic lipase from a lipolytic bacterium in tempeh. J Genet Eng Biotechnol 2023; 21:157. [PMID: 38038870 PMCID: PMC10692048 DOI: 10.1186/s43141-023-00611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Lipases have emerged as essential biocatalysts, having the ability to contribute to a wide range of industrial applications. Microbial lipases have garnered significant industrial attention due to their stability, selectivity, and broad substrate specificity. In the previous study, a unique lipolytic bacterium (Micrococcus luteus EMP48-D) was isolated from tempeh. It turns out the bacteria produce an acidic lipase, which is important in biodiesel production. Our main objectives were to clone the acidic lipase and investigate its potential in biodiesel production. RESULT In this study, the gene encoding a lipase from M. luteus EMP48-D was cloned and expressed heterologously in Escherichia coli. To our knowledge, this is the first attempt at the cloning and expression of the lipase gene from Micrococcus luteus. The amino acid sequence was deduced from the nucleotide sequence (1356 bp) corresponded to a protein of 451 amino acid residues with a molecular weight of about 40 kDa. The presence of a signal peptide suggested that the protein was extracellular. A sequence analysis revealed that the protein had a lipase-specific Gly-X-Ser-X-Gly motif. The enzyme was identified as an acidic lipase with a pH preference of 5.0. Fatty acid preferences for enzyme activities were C8 and C12 (p-nitrophenyl esters), with optimum temperatures at 30-40 °C and still remaining active at 80°C. The enzyme was also shown to convert up to 70% of the substrate into fatty acid methyl ester. CONCLUSION The enzyme was a novel acidic lipase that demonstrated both hydrolytic and transesterification reactions. It appeared particularly promising for the synthesis of biodiesel as this enzyme's catalytic reaction was optimum at low temperatures and was still active at high temperatures.
Collapse
Affiliation(s)
- Naswandi Nur
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jl Raya Jakarta-Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia.
| | - Antonius Suwanto
- Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, 16680, Indonesia
| | - Anja Meryandini
- Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, 16680, Indonesia
| | - Maggy Thenawidjaja Suhartono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, 16680, Indonesia
| | - Esti Puspitasari
- Department of Biotechnology Research and Development, PT Wilmar Benih Indonesia, Bekasi, 17530, Indonesia
| | - Hyung Kwoun Kim
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea
| |
Collapse
|
40
|
Kanprakobkit W, Wichai U, Bunyapraphatsara N, Kielar F. Isolation of Fatty Acids from the Enzymatic Hydrolysis of Capsaicinoids and Their Use in Enzymatic Acidolysis of Coconut Oil. J Oleo Sci 2023; 72:1097-1111. [PMID: 37989304 DOI: 10.5650/jos.ess23112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Herein we report the optimization of enzymatic hydrolysis of a mixture of capsaicinoids, capsaicin and dihydrocapsaicin obtained from chili peppers, and the utilization of the isolated fatty acids for the modification of coconut oil using enzyme catalyzed acidolysis. This work was carried out as the fatty acids that can be isolated from capsaicinoid hydrolysis have been shown to possess interesting biological properties. These biological properties could be better exploited by incorporating the fatty acids into a suitable delivery vehicle. The enzymatic hydrolysis of the mixture of capsaicin and dihydrocapsaicin was carried out using Novozym® 435 in phosphate buffer (pH 7.0) at 50℃. The enzyme catalyst could be reused in multiple cycles of the hydrolysis reaction. The desired 8-methyl-6-trans-nonenoic acid and 8-methylnonanoic acid were isolated from the hydrolysis reaction mixture using a simple extraction procedure with a 47.8% yield. This was carried out by first extracting the reaction mixture at pH 10 with ethyl acetate to remove any dissolved capsaicinoids and vanillyl amine side product. The fatty acids were isolated after adjustment of the pH of the reaction mixture to 5 and second extraction with ethyl acetate. The acidolysis of coconut oil with the obtained fatty acids was performed using Lipozyme® TL IM. The performance of the acidolysis reaction was evaluated using 1H-NMR spectroscopy and verified in selected cases using gas chromatography. The best performing conditions involved carrying out the acidolysis reaction at 60℃ with a 1.2 w/w ratio of the fatty acids to coconut oil and 10% enzyme loading for 72 h. This resulted in the incorporation of 26.61% and 9.86% of 8-methyl-6-trans-nonenoic acid and 8-methylnonanoic acid, respectively, into the modified coconut oil product. This product can act as a potential delivery vehicle for these interesting compounds.
Collapse
Affiliation(s)
- Winranath Kanprakobkit
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University
| | - Uthai Wichai
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University
| | | | - Filip Kielar
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University
| |
Collapse
|
41
|
Pinotsis N, Krüger A, Tomas N, Chatziefthymiou SD, Litz C, Mortensen SA, Daffé M, Marrakchi H, Antranikian G, Wilmanns M. Discovery of a non-canonical prototype long-chain monoacylglycerol lipase through a structure-based endogenous reaction intermediate complex. Nat Commun 2023; 14:7649. [PMID: 38012138 PMCID: PMC10682391 DOI: 10.1038/s41467-023-43354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
The identification and characterization of enzyme function is largely lacking behind the rapidly increasing availability of large numbers of sequences and associated high-resolution structures. This is often hampered by lack of knowledge on in vivo relevant substrates. Here, we present a case study of a high-resolution structure of an unusual orphan lipase in complex with an endogenous C18 monoacylglycerol ester reaction intermediate from the expression host, which is insoluble under aqueous conditions and thus not accessible for studies in solution. The data allowed its functional characterization as a prototypic long-chain monoacylglycerol lipase, which uses a minimal lid domain to position the substrate through a hydrophobic tunnel directly to the enzyme's active site. Knowledge about the molecular details of the substrate binding site allowed us to modulate the enzymatic activity by adjusting protein/substrate interactions, demonstrating the potential of our findings for future biotechnology applications.
Collapse
Affiliation(s)
- Nikos Pinotsis
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Anna Krüger
- Hamburg University of Technology, Kasernenstrasse 12, 21073, Hamburg, Germany
| | - Nicolas Tomas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | | | - Claudia Litz
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Simon Arnold Mortensen
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Garabed Antranikian
- Hamburg University of Technology, Kasernenstrasse 12, 21073, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany.
- University Hamburg Clinical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany.
| |
Collapse
|
42
|
Pedro KCNR, da Silva JVV, Cipolatti EP, Manoel EA, Campisano ISP, Henriques CA, Langone MAP. Adsorption of lipases on porous silica-based materials for esterification in a solvent-free system. 3 Biotech 2023; 13:380. [PMID: 37900269 PMCID: PMC10600090 DOI: 10.1007/s13205-023-03801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
This study deals with lipase immobilization on micro- and mesoporous silica-based materials. The effects of the type of support (silica MCM-41, zeolite HZSM-5 (SAR 25), zeolite HZSM-5 (SAR 280), and the silica-aluminas Siral 10, Siral 20, and Siral 40) were investigated on the immobilization of lipase B from Candida antarctica (CALB) and lipase from Rhizomucor miehei (RML). The supports that allowed the highest immobilization efficiencies for the CALB were Siral 40 (91.4%), HZSM-5 (SAR 280) (90.6%), and MCM-41 (89.4%). Siral 20 allowed the highest immobilization efficiency for RML (97.6%), followed by HZSM-5 (SAR 25) (77.1%) and HZSM-5 (SAR 280) (62.7%). The effect of protein concentration on lipase immobilization was investigated, and the results adjusted well on the Langmuir isotherm model (R2 > 0.9). The maximum protein adsorption capacity of the support determined by the Langmuir model was equal to 10.64 and 20.97 mgprotein gsupport-1 for CALB and RML, respectively. The effects of pH (pH 7.0 and pH 11.0) and phosphate buffer solution concentration (5 and 100 mmol L-1) were also investigated on lipase immobilization. The immobilization efficiency for both lipases was similar for the different pH values. The use of 100 mmol L-1 phosphate buffer decreased the lipase immobilization efficiency. The biocatalysts (CALB-Siral 40 and RML-Siral 20) were tested in the ethyl oleate synthesis. The conversion of 61.7% was obtained at 60 °C in the reaction catalyzed by CALB-Siral 40. Both heterogeneous biocatalysts showed increased thermal stability compared with their free form. Finally, the reuse of the biocatalysts was studied. CALB-Siral 40 and RML-Siral 20 maintained about 30% of the initial conversion after 3 batches of ethyl oleate synthesis. Silica-aluminas (Siral 20 and 40) proved to be a support that allowed a high efficiency of immobilization of lipases and activity for esterification reaction.
Collapse
Affiliation(s)
- Kelly C. N. R. Pedro
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - João V. V. da Silva
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Eliane P. Cipolatti
- Departamento de Engenharia Química, Instituto de Tecnologia, Universidade Federal Rural Do Rio de Janeiro, Rodovia BR 465, Km 07- Zona Rural, 23890-000 Seropédica, RJ Brasil
| | - Evelin A. Manoel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro (UFRJ), 21941-170 Rio de Janeiro, RJ Brasil
| | - Ivone S. P. Campisano
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Cristiane A. Henriques
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Marta A. P. Langone
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
- Instituto Federal de Educação, Ciência e Tecnologia Do Rio de Janeiro, Rua Senador Furtado, 121, 20260-100 Rio de Janeiro, RJ Brasil
| |
Collapse
|
43
|
Sirvi A, Debaje S, Guleria K, Sangamwar AT. Critical aspects involved in lipid dispersion and digestion: Emphasis on in vitro models and factors influencing lipolysis of oral lipid based formulations. Adv Colloid Interface Sci 2023; 321:103028. [PMID: 39491077 DOI: 10.1016/j.cis.2023.103028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Understanding the mechanisms underlying the dispersion and digestion process is vital in the development of oral lipid-based formulations (LBFs). In vitro lipolysis models mimic the digestion process in the stomach and intestine to explore the fundamental mechanism of supersaturation, solubilization, and precipitation of drugs within the LBFs. The lipid digestion is controlled by the in vitro experimental conditions, and constitution of the lipid formulations. Hence, there is a continuous upgradation in the digestion models to best extrapolate the in vivo conditions. This review covers the recent developments in digestion models with media compositions and lipid formulation components. Key findings from recent studies that thoroughly examined the relation between the digestion, solubilization, and permeation of oral LBFs in the presence of bile-lipid aggregates are presented. These developments are foremost to build the in vitro-in vivo correlation of the drugs for regulatory considerations.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
44
|
Yan Y, Liu Y, Zeng C, Xia H. Effect of Digestion on Ursolic Acid Self-Stabilized Water-in-Oil Emulsion: Role of Bile Salts. Foods 2023; 12:3657. [PMID: 37835309 PMCID: PMC10572770 DOI: 10.3390/foods12193657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Exploring the effect of bile salts on the properties of emulsion carriers containing hydrophobic bioactive compounds is particularly critical to understanding the stability and bioavailability of these hydrophobic bioactive compounds in the digestive process. In this study, the effects of bile salts on the stability and digestive characteristics of the ursolic acid (UA) self-stabilized water-in-oil (W/O) emulsion were investigated via static and dynamic (with or without enzyme) in vitro simulated digestive systems. The results showed that under the static system, the basic conditions had less interference, while the bile salts had a significant effect on the appearance and microstructure of the emulsion. The primary mechanism of emulsion instability is hydrophobic binding and depletion flocculation. Under the dynamic condition, it was found that the low concentrations of bile salts can promote the release amount and the rate of free fatty acids via displacement, while high concentrations of bile salts inhibit the decomposition of lipid, which may be related to the secondary coverage formed at the interface by the bile salts. These findings provide a theoretical basis for understanding the digestive behavior of the UA emulsion and its interaction with bile salts, which are conducive to developing and designing new emulsions to improve the bioaccessibility of UA.
Collapse
Affiliation(s)
- Yumeng Yan
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (Y.Y.); (Y.L.); (C.Z.)
- Department of Food Science and Technology, College of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Yugang Liu
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (Y.Y.); (Y.L.); (C.Z.)
| | - Chaoxi Zeng
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (Y.Y.); (Y.L.); (C.Z.)
| | - Huiping Xia
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (Y.Y.); (Y.L.); (C.Z.)
| |
Collapse
|
45
|
Costa IO, Morais JRF, de Medeiros Dantas JM, Gonçalves LRB, Dos Santos ES, Rios NS. Enzyme immobilization technology as a tool to innovate in the production of biofuels: A special review of the Cross-Linked Enzyme Aggregates (CLEAs) strategy. Enzyme Microb Technol 2023; 170:110300. [PMID: 37523882 DOI: 10.1016/j.enzmictec.2023.110300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
This review emphasizes the crucial role of enzyme immobilization technology in advancing the production of two main biofuels, ethanol and biodiesel, with a specific focus on the Cross-linked Enzyme Aggregates (CLEAs) strategy. This method of immobilization has gained attention due to its simplicity and affordability, as it does not initially require a solid support. CLEAs synthesis protocol includes two steps: enzyme precipitation and cross-linking of aggregates using bifunctional agents. We conducted a thorough search for papers detailing the synthesis of CLEAs utilizing amylases, cellulases, and hemicellulases. These key enzymes are involved in breaking down starch or lignocellulosic materials to produce ethanol, both in first and second-generation processes. CLEAs of lipases were included as these enzymes play a crucial role in the enzymatic process of biodiesel production. However, when dealing with large or diverse substrates such as lignocellulosic materials for ethanol production and oils/fats for biodiesel production, the use of individual enzymes may not be the most efficient method. Instead, a system that utilizes a blend of enzymes may prove to be more effective. To innovate in the production of biofuels (ethanol and biodiesel), enzyme co-immobilization using different enzyme species to produce Combi-CLEAs is a promising trend.
Collapse
Affiliation(s)
- Isabela Oliveira Costa
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | - Nathália Saraiva Rios
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
46
|
Fernandez-Lopez L, Roda S, Robles-Martín A, Muñoz-Tafalla R, Almendral D, Ferrer M, Guallar V. Enhancing the Hydrolytic Activity of a Lipase towards Larger Triglycerides through Lid Domain Engineering. Int J Mol Sci 2023; 24:13768. [PMID: 37762071 PMCID: PMC10530837 DOI: 10.3390/ijms241813768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Lipases have valuable potential for industrial use, particularly those mostly active against water-insoluble substrates, such as triglycerides composed of long-carbon chain fatty acids. However, in most cases, engineered variants often need to be constructed to achieve optimal performance for such substrates. Protein engineering techniques have been reported as strategies for improving lipase characteristics by introducing specific mutations in the cap domain of esterases or in the lid domain of lipases or through lid domain swapping. Here, we improved the lipase activity of a lipase (WP_075743487.1, or LipMRD) retrieved from the Marine Metagenomics MarRef Database and assigned to the Actinoalloteichus genus. The improvement was achieved through site-directed mutagenesis and by substituting its lid domain (FRGTEITQIKDWLTDA) with that of Rhizopus delemar lipase (previously R. oryzae; UniProt accession number, I1BGQ3) (FRGTNSFRSAITDIVF). The results demonstrated that the redesigned mutants gain activity against bulkier triglycerides, such as glyceryl tridecanoate and tridodecanoate, olive oil, coconut oil, and palm oil. Residue W89 (LipMRD numbering) appears to be key to the increase in lipase activity, an increase that was also achieved with lid swapping. This study reinforces the importance of the lid domains and their amino acid compositions in determining the substrate specificity of lipases, but the generalization of the lid domain swapping between lipases or the introduction of specific mutations in the lid domain to improve lipase activity may require further investigation.
Collapse
Affiliation(s)
- Laura Fernandez-Lopez
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Sergi Roda
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
| | - Ana Robles-Martín
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- PhD Programme, Faculty of Pharmacy and Food Science, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Rubén Muñoz-Tafalla
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- PhD Programme, Faculty of Pharmacy and Food Science, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - David Almendral
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Víctor Guallar
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
47
|
Tormási J, Abrankó L. Impact of Grape Seed Powder and Black Tea Brew on Lipid Digestion-An In Vitro Co-Digestion Study with Real Foods. Nutrients 2023; 15:nu15102395. [PMID: 37242278 DOI: 10.3390/nu15102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Effects of two foods with bioactive constituents (black tea brew, BTB and grape seed powder, GSP) on lipid digestibility was studied. Lipolysis inhibitory effect of these foods was examined using two test foods (cream and baked beef) with highly different fatty acid (FA) composition. Digestion simulations were performed either using both gastric and pancreatic lipase, or only with pancreatic lipase according to the Infogest protocol. Lipid digestibility was assessed based on the bioaccessible FAs. Results showed the triacylglycerols containing short- and medium-chain FAs (SCFA and MCFA) are non-preferred substrates for pancreatic lipase; however, this is not characteristic for GL. Our findings suggest that both GSP and BTB primarily affect the lipolysis of SCFAs and MCFAs, because the dispreference of pancreatic lipase towards these substrates was further enhanced as a result of co-digestion. Interestingly, GSP and BTB similarly resulted in significant decrease in lipolysis for cream (containing milk fat having a diverse FA profile), whereas they were ineffective in influencing the digestion of beef fat, having simpler FA profile. It highlights that the characteristics of the dietary fat source of a meal can be a key determinant on the observed extent of lipolysis when co-digested with foods with bioactive constituents.
Collapse
Affiliation(s)
- Judit Tormási
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Villányi Street 29-43, 1118 Budapest, Hungary
| | - László Abrankó
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Villányi Street 29-43, 1118 Budapest, Hungary
| |
Collapse
|
48
|
Imam H, Hill K, Reid A, Mix S, Marr PC, Marr AC. Supramolecular Ionic Liquid Gels for Enzyme Entrapment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:6829-6837. [PMID: 37180026 PMCID: PMC10170508 DOI: 10.1021/acssuschemeng.3c00517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Reported herein is an entrapment method for enzyme immobilization that does not require the formation of new covalent bonds. Ionic liquid supramolecular gels are formed containing enzymes that can be shaped into gel beads and act as recyclable immobilized biocatalysts. The gel was formed from two components, a hydrophobic phosphonium ionic liquid and a low molecular weight gelator derived from the amino acid phenylalanine. Gel-entrapped lipase from Aneurinibacillus thermoaerophilus was recycled for 10 runs over 3 days without loss of activity and retained activity for at least 150 days. The procedure does not form covalent bonds upon gel formation, which is supramolecular, and no bonds are formed between the enzyme and the solid support.
Collapse
Affiliation(s)
- Hasan
T. Imam
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Kyle Hill
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Andrew Reid
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Stefan Mix
- Department
of Biocatalysis, Almac Bioscience, Almac
Group, Almac House, 20 Seagoe Industrial Estate, Craigavon, Belfast, Northern Ireland, United Kingdom BT63 5QD
| | - Patricia C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
- E-mail:
| | - Andrew C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
- E-mail:
| |
Collapse
|
49
|
Sarakhman O, Wenninger N, Rogala A, Švorc Ľ, Ortner A. Electrochemical flow injection approach for routine screening of lipase activity in pancreatic preparations. Talanta 2023; 260:124588. [PMID: 37148687 DOI: 10.1016/j.talanta.2023.124588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
A state-of-the-art strategy for the determination of lipase activity in pancreatic preparations using flow injection analysis (FIA) with electrochemical detection (FIA-ED) is described. The procedure is based on the enzymatic reaction of a specific substrate (1,3-dilinoleoyl-glycerol) with lipase from porcine pancreas and determination of enzymatically formed linoleic acid (LA) at +0.4 V by applying a cobalt (II) phthalocyanine-multiwalled carbon-nanotubes modified carbon paste electrode (Co(II)PC/MWCNT/CPE). In order to get a high-performance analytical method, sample preparation, flow system, and electrochemical conditions were optimized. Under optimized conditions the lipase activity of porcine pancreatic lipase was calculated to be 0.47 units per mg lipase protein based on the definition that 1 unit hydrolyses 1 microequivalent linoleic acid from 1,3-dilinoleoyl-glycerol per 1 min at pH 9 and 20 °C (kinetic measurement: 0-25 min). Moreover, the developed procedure was shown to be easily adaptable for the fixed-time assay (incubation time 25 min) as well. In this case, linear correlation between flow signal and lipase activity was found in the range from 0.8 to 18 U L-1. LOD and LOQ were determined to be 0.3 U L-1 and 1 U L-1, respectively. The kinetic assay was further preferred for the determination of lipase activity in commercially available pancreatic preparations. The lipase activities of all preparations obtained by the present method were found to be in good correlation with those obtained by the titrimetric method and declared by manufacturers.
Collapse
Affiliation(s)
- Olha Sarakhman
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Nadine Wenninger
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Schubertstraße 1, 8010, Graz, Austria
| | - Anita Rogala
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Schubertstraße 1, 8010, Graz, Austria
| | - Ľubomír Švorc
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Astrid Ortner
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Schubertstraße 1, 8010, Graz, Austria.
| |
Collapse
|
50
|
Infantes-Garcia MR, Verkempinck SHE, Carriére F, Hendrickx ME, Grauwet T. Pre-duodenal lipid digestion of emulsions: Relevance, colloidal aspects and mechanistic insight. Food Res Int 2023; 168:112785. [PMID: 37120232 DOI: 10.1016/j.foodres.2023.112785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The digestion of lipids in the human body has several health and nutritional implications. Lipid digestion is an interfacial phenomenon meaning that water-soluble lipases need to first adsorb to the oil-water interface before enzymatic conversions can start. The digestion of lipids mainly occurs on colloidal structures dispersed in water, such as oil-in-water (o/w) emulsions, which can be designed during food formulation/processing or structured during digestion. From a food design perspective, different in vitro studies have demonstrated that the kinetics of lipid digestion can be influenced by emulsion properties. However, most of these studies have been performed with pancreatic enzymes to simulate lipolysis in the small intestine. Only few studies have dealt with lipid digestion in the gastric phase and its subsequent impact on intestinal lipolysis. In this aspect, this review compiles information on the physiological aspects of gastric lipid digestion. In addition, it deals with colloidal and interfacial aspects starting from emulsion design factors and how they evolve during in vitro digestion. Finally, molecular mechanisms describing gastric lipolysis are discussed.
Collapse
Affiliation(s)
- Marcos R Infantes-Garcia
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Fréderic Carriére
- CNRS, Aix-Marseille Université, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, 13402 Marseille cedex 9, France
| | - Marc E Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| |
Collapse
|