1
|
Cervantes FJ, Ramírez-Montoya LA. Immobilized Nanomaterials for Environmental Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196659. [PMID: 36235196 PMCID: PMC9572314 DOI: 10.3390/molecules27196659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Nanomaterials (NMs) have been extensively used in several environmental applications; however, their widespread dissemination at full scale is hindered by difficulties keeping them active in engineered systems. Thus, several strategies to immobilize NMs for their environmental utilization have been established and are described in the present review, emphasizing their role in the production of renewable energies, the removal of priority pollutants, as well as greenhouse gases, from industrial streams, by both biological and physicochemical processes. The challenges to optimize the application of immobilized NMs and the relevant research topics to consider in future research are also presented to encourage the scientific community to respond to current needs.
Collapse
|
2
|
Liu WY, Hsieh YS, Wu YT. Poly (Lactic-Co-Glycolic) Acid–Poly (Vinyl Pyrrolidone) Hybrid Nanoparticles to Improve the Efficiency of Oral Delivery of β-Carotene. Pharmaceutics 2022; 14:pharmaceutics14030637. [PMID: 35336010 PMCID: PMC8954677 DOI: 10.3390/pharmaceutics14030637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 01/23/2023] Open
Abstract
The aim of this study was to develop a nanoparticle formulation made of poly (vinyl pyrrolidone) (PVP) and poly (lactic-co-glycolic) acid (PLGA) for the oral delivery of β-carotene (BC). The hybrid nanoparticles were prepared by the interfacial deposition method, and the physicochemical properties of this formulation were characterized in terms of its morphology, particle size, size distribution, encapsulation efficiency, dissolution, intestinal permeability, and in vivo pharmacokinetics. Our results demonstrated that BC-loaded nanoformulation and PLGA nanoparticles (PNP) significantly enhanced a release 6.1 times higher than BC suspension. The fortification of PVP into PLGA nanoparticles, named PLGA–PVP hybrid nanoparticles (PPNP), significantly reduced the particle size, as well as led to an increase 1.9 times higher in the in vitro release of BC, compared with PNP. For the ex vivo intestinal permeability assessment, PNP and PPNP–K15 significantly enhanced the intestinal permeability by 2.7 and 6.5 times at the jejunum, and 2.3 and 4.5 times at the ileum, when compared with unformulated BC. According to the pharmacokinetic study, the optimized hybrid formulation significantly increased the peak plasma concentration (Cmax) and the area under the curve (AUC0-t), and the oral relative bioavailability showed a five-fold enhancement compared with that of the BC suspension. Our results indicate that the hybrid nanoparticulate delivery system is an efficient strategy for the oral delivery of BC.
Collapse
Affiliation(s)
| | | | - Yu-Tse Wu
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 2254)
| |
Collapse
|
3
|
Synthesis of hybrid dendritic mesoporous silica titanium nanoparticles to stabilize Pickering emulsions for enhanced oil recovery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13081151. [PMID: 34452113 PMCID: PMC8398618 DOI: 10.3390/pharmaceutics13081151] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery by inherent passive targeting phenomena and adopting active targeting strategies, but also improve the pharmacokinetics and bioavailability of the loaded drugs, leading to enhanced therapeutic efficacy and safety compared to conventional treatment modalities. Small molecule drugs are the most widely used anticancer agents at present, while biological macromolecules, such as therapeutic antibodies, peptides and genes, have gained increasing attention. Therefore, this review focuses on the recent achievements of novel nano-encapsulation in targeted drug delivery. A comprehensive introduction of intelligent delivery strategies based on various nanocarriers to encapsulate small molecule chemotherapeutic drugs and biological macromolecule drugs in cancer treatment will also be highlighted.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qingqing Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Zhong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (H.Z.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (H.Z.); (W.W.)
| |
Collapse
|
5
|
Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021; 167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.
| |
Collapse
|
6
|
Bhol P, Mohanty M, Mohanty PS. Polymer-matrix stabilized metal nanoparticles: Synthesis, characterizations and insight into molecular interactions between metal ions, atoms and polymer moieties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Nucleation Points: The Forgotten Parameter in the Synthesis of Hydrogel-Coated Gold Nanoparticles. Polymers (Basel) 2021; 13:polym13030373. [PMID: 33530296 PMCID: PMC7865208 DOI: 10.3390/polym13030373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
The implementation of gold-hydrogel core-shell nanomaterials in novel light-driven technologies requires the development of well-controlled and scalable synthesis protocols with precisely tunable properties. Herein, new insights are presented concerning the importance of using the concentration of gold cores as a control parameter in the seeded precipitation polymerization process to modulate—regardless of core size—relevant fabrication parameters such as encapsulation yield, particle size and shrinkage capacity. Controlling the number of nucleation points results in the facile tuning of the encapsulation process, with yields reaching 99% of gold cores even when using different core sizes at a given particle concentration. This demonstration is extended to the encapsulation of bimodal gold core mixtures with equally precise control on the encapsulation yield, suggesting that this principle could be extended to encapsulating cores composed of other materials. These findings could have a significant impact on the development of stimuli-responsive smart materials.
Collapse
|
8
|
Tahir F, Begum R, Wu W, Irfan A, Farooqi ZH. Physicochemical aspects of inorganic nanoparticles stabilized in N-vinyl caprolactam based microgels for various applications. RSC Adv 2020; 11:978-995. [PMID: 35423699 PMCID: PMC8693434 DOI: 10.1039/d0ra09327k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
The vinyl caprolactam (VCL) based microgel system has become the center of great attention due to its versatile properties. Copolymerization of VCL with an ionic monomer imparts pH responsive properties into the microgel system in addition to thermo-sensitivity. Stimuli responsive behavior of VCL-based microgels makes them prospective and appealing candidates for practical applications covering the fields of drug delivery, catalysis and optical devices. In the last few years, VCL-based microgels have been used as microreactors and stabilizers for the synthesis and stabilization of inorganic nanoparticles to obtain hybrid microgels. The present review article provides a summary of the present-day progress of fabrication, stabilization, categorization and analysis of VCL-based microgels and their hybrids with different morphologies. The stimuli responsive properties and applications of VCL-based hybrid microgels have been reviewed critically. The remaining problems which need to be addressed have been pointed out for further advancement in this field.
Collapse
Affiliation(s)
- Fatima Tahir
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan
| | - Robina Begum
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan
| |
Collapse
|
9
|
Shu T, Shen Q, Zhang X, Serpe MJ. Stimuli-responsive polymer/nanomaterial hybrids for sensing applications. Analyst 2020; 145:5713-5724. [PMID: 32743626 DOI: 10.1039/d0an00686f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical and biological/biochemical sensors are capable of generating readout signals that are proportional to the concentration of specific analytes of interest. Signal sensitivity and limit of detection/quantitation can be enhanced through the use of polymers, nanomaterials, and their hybrids. Of particular interest are stimuli-responsive polymers and nanomaterials due to their ability to change their physical and/or chemical characteristics in response to their environment, and/or in the presence of molecular/biomolecular species of interest. Their individual use for sensing applications have many benefits, although this review focuses on the utility of stimuli-responsive polymer and nanomaterial hybrids. We discuss three main topics: stimuli-responsive nanogels, stimuli-responsive network polymers doped with nanomaterials, and nanoparticles modified with stimuli-responsive polymers.
Collapse
Affiliation(s)
- Tong Shu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | | | | | | |
Collapse
|
10
|
Sharma B, Striegler S. Nonionic Surfactant Blends to Control the Size of Microgels and Their Catalytic Performance during Glycoside Hydrolyses. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Babloo Sharma
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Susanne Striegler
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
11
|
Zhao L, Shi L, Wang J, Zhang Q, Yang X, Lu Y. Degradable inorganic/polymer core-shell microspheres for pH-triggered release of indole-3-acetic acid. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2018.1563087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Linlin Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Luqing Shi
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Jing Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Qiang Zhang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Xinlin Yang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Yan Lu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
12
|
Ratnam KV, Manjunatha H, Janardan S, Babu Naidu KC, Ramesh S. Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: An abridged review. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
13
|
Woo J, Park H, Na Y, Kim S, Choi WI, Lee JH, Seo H, Sung D. Novel fluorescein polymer-based nanoparticles: facile and controllable one-pot synthesis, assembly, and immobilization of biomolecules for application in a highly sensitive biosensor. RSC Adv 2020; 10:2998-3004. [PMID: 35496132 PMCID: PMC9048966 DOI: 10.1039/c9ra09106h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
A key aspect of biochip and biosensor preparation is optimization of the optical or electrochemical techniques that combine high sensitivity and specificity. Among them, optical techniques such as the use of fluorescent polymeric nanoparticles have resulted in dramatic progress in the field of diagnostics due to their range of advantages. We herein report a facile approach for the development of novel fluorescein polymeric nanoparticles (FPNPs) with immobilization of specific biomolecules for application in a highly sensitive optical biosensor. A series of three amphiphilic fluorescein polymers (poly(FMA-r-NAS-r-MA)), comprising hydrophobic fluorescein O-methacrylate (FMA), hydrophilic N-acryloxysuccinimide (NAS), and methacrylic acid (MA) monomers were synthesized through radical polymerization. In an aqueous environment, these fluorescein polymers self-assembled into spherical shaped nanoparticles with a well-defined particle size, narrow particle size distribution, and enhanced fluorescence properties. The bio-immobilization properties of the FPNPs were also tunable by control of the activated N-hydroxysuccinimide ester group in the polymer series. Furthermore, the fluorescence sensitivity of bovine serum albumin detection by the FPNPs indicates that the limit of detection and sensitivity were improved compared to conventional fluorescence dye-labelled proteins. These novel FPNPs therefore represent a suitable technology for disease diagnosis and biomarker detection to ultimately improve the sensitivity of existing analytical methodologies in a facile and cost-effective manner. We report a facile approach for the development of novel fluorescein polymeric nanoparticles (FPNPs) with immobilization of specific biomolecules for application in a highly sensitive optical biosensor.![]()
Collapse
Affiliation(s)
- Jiseob Woo
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Heesun Park
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Yoonhee Na
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Sunghyun Kim
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Jin Hyung Lee
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Hyemi Seo
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Daekyung Sung
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| |
Collapse
|
14
|
Sánchez-González J, Peña-Gallego Á, Sanmartín J, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A. NMR spectroscopy for assessing cocaine-functional monomer interactions when preparing molecularly imprinted polymers. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Lu D, Zhu M, Wu S, Wang W, Lian Q, Saunders BR. Triply responsive coumarin-based microgels with remarkably large photo-switchable swelling. Polym Chem 2019. [DOI: 10.1039/c9py00233b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Using two different wavelengths of UV light enables remarkably strong photo-switchable swelling of pH- and temperature-responsive microgels and photo-release of doxorubicin.
Collapse
Affiliation(s)
- Dongdong Lu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Mingning Zhu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Shanglin Wu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Wenkai Wang
- School of Materials
- University of Manchester
- Manchester
- UK
- Beijing National Laboratory for Molecular Sciences (BNLMS)
| | - Qing Lian
- School of Materials
- University of Manchester
- Manchester
- UK
| | | |
Collapse
|
16
|
Beltzung A, Colombo C, Nachtegaal M, Wu H, Storti G, Morbidelli M. Incorporation and distribution of noble metal atoms in polyacrylonitrile colloidal particles using different polymerization strategies. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Synthesis of hybrid microspheres from zirconium butoxide and an ionic–non-ionic copolymer. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Liu S, Eijkelenkamp R, Duvigneau J, Vancso GJ. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37929-37940. [PMID: 28980799 PMCID: PMC5668892 DOI: 10.1021/acsami.7b11248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/05/2017] [Indexed: 05/27/2023]
Abstract
Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO2-blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO2-philicity. The successful synthesis of core-shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core-shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of designer nucleating particles to enhance the foam cell nucleation efficiency.
Collapse
|
19
|
Zhang J, Wang T, Mu S, Olerile LD, Yu X, Zhang N. Biomacromolecule/lipid hybrid nanoparticles for controlled delivery of sorafenib in targeting hepatocellular carcinoma therapy. Nanomedicine (Lond) 2017; 12:911-925. [DOI: 10.2217/nnm-2016-0402] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Hybrids composed of various materials are highly versatile for drug delivery in tumor therapy including hepatocellular carcinoma. Herein, a sorafenib (SF)-loaded biomacromolecule hyaluronic acid (HA)/lipid hybrid nanoparticles (HA/SF-cLNS) were developed for targeting drug delivery. Materials & methods: In vitro assays determined HA/SF-cLNS release behavior, enzymatic degradation, uptake and cytotoxicity. H22-bearing liver cancer xenograft murine models were used to evaluate the biodistribution and therapeutic efficacy in vivo. Results: HA/SF-cLNS could be disassembled and drug was released in response to hyaluronidase. In vivo imaging results demonstrated HA/cLNS could enhance drug accumulation at tumor site. Meanwhile, HA/SF-cLNS exhibited improved antitumor efficacy in vitro and in vivo. Conclusion: HA/SF-cLNS demonstrated the potential to enhance antitumor efficacy of SF.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Tianqi Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Shengjun Mu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Livesey D Olerile
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Xiaoyue Yu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Na Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
20
|
Wójcik K, Czaja T, Szostak R, Grzeszczuk M. Silver(I) chloride-polypyrrole composite: electrochemical preparation, characterization, and application as a SERS platform. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3429-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Benedetti C, Cazzolaro A, Carraro M, Graf R, Landfester K, Gross S, Muñoz-Espí R. Dual Role of Zirconium Oxoclusters in Hybrid Nanoparticles: Cross-Linkers and Catalytic Sites. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26275-26284. [PMID: 27611714 DOI: 10.1021/acsami.6b07023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic-inorganic hybrid nanoparticles are prepared by free-radical copolymerization of methyl methacrylate (MMA) with the structurally well-defined methacrylate-functionalized zirconium oxocluster Zr4O2(methacrylate)12. The polymerization process occurs in the confined space of miniemulsion droplets. The formation of covalent chemical bonds between the organic and the inorganic counterparts improves the distribution of the guest species (oxoclusters) in the polymer particles, overcoming problems related to migration, leaching, and stability. Because of the presence of a high number of double bonds (12 per oxocluster), the oxoclusters act as efficient cross-linking units for the resulting polymer matrix, thus ruling its swelling behavior in organic solvents. The synthesized hybrid nanostructures are applied as heterogeneous systems in the catalytic oxidation of an organic sulfide to the corresponding sulfoxide and sulfone by hydrogen peroxide, displaying quantitative sulfide conversion in 4-24 h, with overall turnover numbers (TON) up to 8000 after 4 cycles.
Collapse
Affiliation(s)
- Cesare Benedetti
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Alessandro Cazzolaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Via Marzolo 1, 35131 Padova, Italy
| | - Mauro Carraro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Via Marzolo 1, 35131 Padova, Italy
| | - Robert Graf
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Via Marzolo 1, 35131 Padova, Italy
- ICMATE-CNR , Via Marzolo 1, 35131 Padova, Italy
| | - Rafael Muñoz-Espí
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
- Institut de Ciència dels Materials (ICMUV), Universitat de València , C/Catedràtic José Beltrán 2, 46980 Paterna, Spain
| |
Collapse
|