1
|
Li K, Liu Y, Lou B, Tan Y, Chen L, Liu Z. DNA-Guided Metallization of Nanomaterials and Their Biomedical Applications. Molecules 2023; 28:molecules28093922. [PMID: 37175332 PMCID: PMC10180097 DOI: 10.3390/molecules28093922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Precise control of the structure of metallic nanomaterials is critical for the advancement of nanobiotechnology. As DNA (deoxyribonucleic acid) can readily modify various moieties, such as sulfhydryl, carboxyl, and amino groups, using DNA as a directing ligand to modulate the morphology of nanomaterials is a promising strategy. In this review, we focus on the use of DNA as a template to control the morphology of metallic nanoparticles and their biomedical applications, discuss the use of DNA for the metallization of gold and silver, explore the factors that influence the process, and outline its biomedical applications. This review aims to provide valuable insights into the DNA-guided growth of nanomaterials. The challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
| |
Collapse
|
2
|
An ultrasensitive and dual-recognition SERS biosensor based on Fe3O4@Au-Teicoplanin and aptamer functionalized Au@Ag nanoparticles for detection of Staphylococcus aureus. Talanta 2022; 250:123648. [DOI: 10.1016/j.talanta.2022.123648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022]
|
3
|
Kumaravel S, Subramanian M, Karthick K, Sakthivel A, Kundu S, Alwarappan S. DNA-Modified Cobalt Tungsten Oxide Hydroxide Hydrate Nanochains as an Effective Electrocatalyst with Amplified CO Tolerance during Methanol Oxidation. ACS OMEGA 2021; 6:19162-19169. [PMID: 34337254 PMCID: PMC8320070 DOI: 10.1021/acsomega.1c02515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/24/2021] [Indexed: 05/05/2023]
Abstract
Direct methanol fuel cell technology implementation mainly depends on the development of non-platinum catalysts with good CO tolerance. Among the widely studied transition-metal catalysts, cobalt oxide with distinctively higher catalytic efficiency is highly desirable. Here, we have evolved a simple method of synthesizing cobalt tungsten oxide hydroxide hydrate nanowires with DNA (CTOOH/DNA) and without incorporating DNA (CTOOH) by microwave irradiation and subsequently employed them as electrocatalysts for methanol oxidation. Following this, we examined the influence of incorporating DNA into CTOOH by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The enhanced electrochemical surface area of CTOOH offered readily available electroactive sites and resulted in a higher oxidation current at a lower onset potential for methanol oxidation. On the other hand, CTOOH/DNA exhibited improved CO tolerance and it was evident from the chronoamperometric studies. Herein, we noticed only a 2.5 and 1.8% drop at CTOOH- and CTOOH/DNA-modified electrodes, respectively, after 30 min. Overall, from the results, it was evident that the presence of DNA in CTOOH played an important role in the rapid removal of adsorbed intermediates and regenerated active catalyst centers possibly by creating high density surface defects around the nanochains than bare CTOOH.
Collapse
Affiliation(s)
- Sangeetha Kumaravel
- CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector
19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | | | - Kannimuthu Karthick
- CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector
19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Arunkumar Sakthivel
- CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector
19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Subrata Kundu
- CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector
19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Subbiah Alwarappan
- CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector
19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|