1
|
Martins RO, Cardoso AT, Borsatto JV, Lanças FM. Advances in green carbon-based biosorbents: From conventional to miniaturized sample preparation strategies. Talanta 2025; 283:127171. [PMID: 39515052 DOI: 10.1016/j.talanta.2024.127171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Developing novel sorbent phases has advanced solid-based sample preparation techniques, improving analytical performance in complex matrices. Carbon-based sorbents, known for their high surface area, thermal and mechanical stability, and modifiability due to abundant organic functional groups, have emerged as exceptional materials in this field. Due to their versatile characteristics, carbon-based materials have been extensively investigated as promising materials for anchoring and functionalization with biopolymers, resulting in innovative hybrid materials, so-called carbon-based biosorbents. These biosorbents offer numerous advantages, including enhanced physicochemical properties and biodegradability, which help reduce the environmental impact of their synthesis, particularly when compared to conventional synthetic sorbent production methods that lack adherence to environmentally sustainable protocols. Among the various biopolymers used for modification, chitosan, starch, cyclodextrin, cellulose, and agarose have been identified as promising candidates for integration with carbon-based materials. In light of the ongoing advancements in developing novel carbon-based biosorbent materials, this review aims to highlight their synthesis using these biopolymers and examine their application in conventional and miniaturized sample preparation techniques across diverse matrices.
Collapse
Affiliation(s)
- Rafael Oliveira Martins
- Universidade de São Paulo, Instituto de Química de São Carlos, 13566-590, São Carlos, SP, Brazil
| | | | - João Victor Borsatto
- Universidade de São Paulo, Instituto de Química de São Carlos, 13566-590, São Carlos, SP, Brazil
| | - Fernando Mauro Lanças
- Universidade de São Paulo, Instituto de Química de São Carlos, 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Zhang Q, Pan Y, Pan J, Wang Z, Lu R, Sun J, Feng J. Differential insulin response characteristics of graphene oxide-gold nanoparticle composites under varied synthesis conditions. PLoS One 2025; 20:e0317126. [PMID: 39804896 PMCID: PMC11730386 DOI: 10.1371/journal.pone.0317126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
The structural alterations in the constituent materials of nanocomposites such as graphene nanocomposites typically induce changes in their properties including mechanical, electrical, and optical properties. Therefore, by altering the preparation conditions of nanocomposites and investigating their responsiveness to basic biomolecules (such as proteins), it is possible to explore the application potentials of the composites and guide development of new nanocomposite preparation. In this study, different composites of graphene oxide and gold nanoparticles (AuNPs/GO) were obtained by varying the volumes of reducing agents used in the one-pot hydrothermal method. Insulin was chosen as a basic protein to study the response characteristics of AuNPs/GO under different preparation conditions. Optical responses of these composites to pure insulin and various commercial insulin types were all explored for the first time. The results indicated that AuNPs/GO could optically respond to insulin, including pure insulin and various types of commercial insulin, and changes in the preparation conditions could really influence this response. Moreover, optimal preparation conditions could be determined by an optical method for the largest responses of the nanocomposites to insulin. Based on previous research and the results of this study, it is speculated that the responses of AuNPs/GO to insulin may attribute to glutamic acids, asparagines, and glutamines on insulin, which may interact with AuNPs/GO, particularly with the AuNPs in the composites. Besides, the AuNPs/GO could exhibit relatively stable responses to various commercial insulin types and detect the concentration of specific branded commercial insulin with smaller errors. In summary, this study demonstrated the application potential of AuNPs/GO in areas such as drug testing and production, while also furnishing an experimental foundation and direction for further applications of AuNPs/GO in biosensing and biomolecule detection.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yanjun Pan
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jin Pan
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Zhichen Wang
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ruyi Lu
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jing Sun
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jingyi Feng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
3
|
Mao X, Liu Y, Qiao C, Sun Y, Zhao Z, Liu J, Zhu L, Zeng H. Nano-fibrous biopolymers as building blocks for gel networks: Interactions, characterization, and applications. Adv Colloid Interface Sci 2025; 338:103398. [PMID: 39823917 DOI: 10.1016/j.cis.2025.103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter-/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors. The inter-/intra-molecular interactions directly affect the assembly of nano-building blocks, which determines the structure of gels, and the integrity of connected nano-building blocks, influencing the mechanical properties and the performance of gels in specific applications. This review focuses on four biopolymer nanofibers (cellulose, chitin, silk, collagen), commonly used in gel preparations, as representatives for polysaccharides and polypeptides. The covalent and non-covalent interactions between biopolymers and other materials have been categorized and discussed in relation to the resulting gel network structures and properties. Nanomechanical characterization techniques, such as surface forces apparatus (SFA) and atomic force microscopy (AFM), have been employed to precisely quantify the intermolecular interactions between biopolymers and other building blocks. The applications of these gels are classified and correlated to the functions of their building blocks. The inter-/intra-molecular interactions act as "sewing threads", connecting all nano-building blocks to establish suitable network structures and functions. This review aims to provide a comprehensive understanding of the interactions involved in gel preparation and the design principles needed to achieve targeted functional gels.
Collapse
Affiliation(s)
- Xiaohui Mao
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Yujie Liu
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, 510700 Guangzhou, PR China
| | - Liping Zhu
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
4
|
Sharifi J, Rizvi G, Fayazfar HR. Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5782. [PMID: 39685218 DOI: 10.3390/ma17235782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 12/18/2024]
Abstract
The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.% CNTs to the PLA matrix marked the electrical percolation, achieving conductivity of 8.3 × 10-3 S.m-1, thanks to the uniform distribution of CNTs within the PLA matrix facilitated by the solution casting method. Rheological assessments paralleled these findings; the addition of 2 wt.% CNTs transitioned the nanocomposite from liquid-like to a solid-like behavior with a percolated network structure, significantly elevating rheological properties compared to the composite with 1 wt.% CNTs. Mechanical evaluations of the printed samples revealed improvement in tensile strength and modulus compared to virgin PLA by a uniform distribution of 2 wt.% CNTs into PLA, with an increase of 14.5% and 10.3%, respectively. To further enhance the electrical conductivity and sensing capabilities of the developed samples, an electrochemical surface activation treatment was applied to as-printed nanocomposite samples. The field-emission scanning electron microscopy (FE-SEM) analysis confirmed that this surface activation effectively exposed the CNTs to the surface of 3D-printed parts by removing a thin layer of polymer from the surface, thereby optimizing the composite's electroconductivity performance. The findings of this study underscore the potential of the proposed eco-friendly method in developing advanced 3D-printed bio-nanocomposites based on carbon nanotubes and biopolymers, using a green solution casting and cost-effective material extrusion 3D-printing method, for electrochemical-sensing applications.
Collapse
Affiliation(s)
- Javid Sharifi
- Eco-Friendly Circular Advanced Materials and Additive Manufacturing (ECAM) Lab, Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Ghaus Rizvi
- Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Haniyeh Ramona Fayazfar
- Eco-Friendly Circular Advanced Materials and Additive Manufacturing (ECAM) Lab, Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
5
|
Stokes K, Sun Y, Thomas JL, Passaretti P, White H, Goldberg Oppenheimer P. Conductivity optimisation of graphene oxide-M13 bacteriophage nanocomposites: towards graphene-based gas micronano-sensors. DISCOVER NANO 2024; 19:152. [PMID: 39289302 PMCID: PMC11408459 DOI: 10.1186/s11671-024-04101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Graphene oxide (GO) and M13 bacteriophage can self-assemble to form ultra-low density porous structures, known as GraPhage13 aerogels (GPA). Due to the insulating nature of GPA and the challenges in producing highly conductive aerogels, it is paramount to explore ways to enhance the conductivity of GPA. Herein, we have developed a method to enhance the conductivity of GPA, via the integration and optimisation of 5 nm and 20 nm diameter gold nanoparticles (AuNPs) into the aerogel structure and systematically analysed the morphology, composition and spectroscopic properties of the resulting GPA-Au nanocomposite. The fabricated GPA-Au nanocomposites exhibited remarkable increases in conductivity, with the integration of 5 nm AuNPs leading to a 53-fold increase compared to GPA, achieving a performance of up to 360 nS/cm, which is within the range suitable for miniaturised semiconductor devices. The mechanism behind the conductivity enhancement was further investigated and attributed to GO-AuNP interactions increasing the carrier density by introducing new energy levels in the GO band gap or shifting its Fermi level towards the conduction band. These findings demonstrate the potential of functionalised AuNPs to significantly improve the electrical properties of GPA, paving the way for their application in gas sensors for biological and chemical detection and a new range of advanced semiconductor devices.
Collapse
Affiliation(s)
- Kate Stokes
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yiwei Sun
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Paragraf Limited, Cambridge, PE28 3EB, UK.
| | - Jarrod L Thomas
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Henry White
- BAE-Systems - Air Sector, Buckingham House, FPC 267, Filton, Bristol, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK.
| |
Collapse
|
6
|
Andoh V, Ocansey DKW, Naveed H, Wang N, Chen L, Chen K, Mao F. The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6099-6126. [PMID: 38911500 PMCID: PMC11194004 DOI: 10.2147/ijn.s471360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
The relentless pursuit of effective cancer diagnosis and treatment strategies has led to the rapidly expanding field of nanotechnology, with a specific focus on nanocomposites. Nanocomposites, a combination of nanomaterials with diverse properties, have emerged as versatile tools in oncology, offering multifunctional platforms for targeted delivery, imaging, and therapeutic interventions. Nanocomposites exhibit great potential for early detection and accurate imaging in cancer diagnosis. Integrating various imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging, into nanocomposites enables the development of contrast agents with enhanced sensitivity and specificity. Moreover, functionalizing nanocomposites with targeting ligands ensures selective accumulation in tumor tissues, facilitating precise imaging and diagnostic accuracy. On the therapeutic front, nanocomposites have revolutionized cancer treatment by overcoming traditional challenges associated with drug delivery. The controlled release of therapeutic agents from nanocomposite carriers enhances drug bioavailability, reduces systemic toxicity, and improves overall treatment efficacy. Additionally, the integration of stimuli-responsive components within nanocomposites enables site-specific drug release triggered by the unique microenvironment of the tumor. Despite the remarkable progress in the field, challenges such as biocompatibility, scalability, and long-term safety profiles remain. This article provides a comprehensive overview of recent developments, challenges, and prospects, emphasizing the transformative potential of nanocomposites in revolutionizing the landscape of cancer diagnostics and therapeutics. In Conclusion, integrating nanocomposites in cancer diagnosis and treatment heralds a new era for precision medicine.
Collapse
Affiliation(s)
- Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Central Region, CC0959347, Ghana
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
7
|
Salimbahrami SN, Ghorbani-HasanSaraei A, Tahermansouri H, Shahidi SA. Synthesis, optimization via response surface methodology, and structural properties of carboxymethylcellulose/curcumin/graphene oxide biocomposite films/coatings for the shelf-life extension of shrimp. Int J Biol Macromol 2023; 253:126724. [PMID: 37673155 DOI: 10.1016/j.ijbiomac.2023.126724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
In this study, carboxymethylcellulose (CMC), curcumin (Cur), and graphene oxide (GO) were used to prepare a novel biocomposite film (CMC-Cur-GO). A central composite design under response surface methodology was employed to optimize the films in terms of water vapor permeability (WVP) and swelling percentage (SP). Under the optimum conditions, which the rates of CMC, GO and curcumin were found to be 1350 mg, 29.99 mg, and 0.302 g, respectively, WVP and SP of CMC-Cur-GO were obtained 0.902 × 10-8 (g/m·h·Pa) and 13.62 %, respectively. The biocomposite films (CMC, CMC-Cur, CMC-GO and CMC-Cur-GO) were characterized by Fourier transform infrared spectroscopy, field-emission scanning electron microscope, thermal gravimetric analysis, X-ray diffraction analysis, ultraviolet-vis light transmittance, moisture content, and mechanical properties. Compared with pure CMC film, the tensile strength, elongation at break and Young's modulus of CMC-Cur-GO were significantly improved by up to 75 %, 41 % and 23 %, respectively (p < 0.05). Then, CMC-Cur-GO was applied as a coating solution for the shrimps. The coated shrimps with the CMC-Cur-GO significantly (p < 0.05) showed a noteworthy improvement in microbial quality (total and psychrotrophic bacterial count), chemical deterioration and lipid oxidation (pH and total volatile basic nitrogen, peroxide value and thiobarbituric acid) and physical characteristic (weight loss) as compared to other samples. The CMC-Cur-GO coating could increase the shelf life of shrimp under refrigerated storage.
Collapse
Affiliation(s)
| | | | - Hasan Tahermansouri
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
8
|
Teijido R, Zhang Q, Blanco M, Pérez-Álvarez L, Lanceros-Méndez S, Vilas-Vilela JL, Ruiz-Rubio L. Graphene-Enhanced Methacrylated Alginate Gel Films for Sustainable Dye Removal in Water Purification. Gels 2023; 10:25. [PMID: 38247748 PMCID: PMC10815123 DOI: 10.3390/gels10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Self-standing nanocomposite films were prepared by three-dimensional UV-induced radical copolymerization of methacrylated alginate (MALG) with acrylic acid (AA) and reinforced with graphene oxide (GO) to improve both mechanical strength and dye adsorption capacity in wastewater decontamination operations. Dynamic mechanical-thermal analysis revealed variations in storage modulus: the higher the GO content, the higher the storage modulus (E') values. Also, the higher the temperature (associated with a lower and lower water content of films), the larger values of E' for the films of the same composition (E'(25 °C) = 676.6-1538.7 MPa; E'(100 °C) = 886.9-2066.6 MPa), providing insights into the compatibility between GO and the MALG/AA matrix, as well as, assessing the improvement in the nanocomposite's final mechanical properties. These crosslinked films in a dry state exhibited rapid water uptake and relatively short drying times (ca. 30 min at room temperature for the MALG/AA/GO composites) resulting from the swelling-drying studies and water contact angle measurements. The efficacy of methylene blue removal from water assessed via UV-VIS spectrometry revealed excellent results, expressed as an adsorption yield of 70-80% and 85-98% after 30 h and 258 h, respectively, of immersion time of films into an MB aqueous solution of 12.5 mg/L (as the contaminated water model). The reusability of the same films was evaluated by consecutive extraction processes of MB from the composite membranes when the content of desorbed dye was also spectrophotometrically monitored and conducted in acidic conditions (HCl aqueous solutions of pH 2). Overall, the introduction of GO in the developed self-standing MALG/AA nanocomposite films exhibited enhanced mechanical properties and increased efficiency for dye removal applications. Their great reutilization potential was highlighted by low drying times and a good ability to release the dye initially adsorbed. Thus, the prepared films could be suitable materials for sustainable and effective water treatment technologies.
Collapse
Affiliation(s)
- Rubén Teijido
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Qi Zhang
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Miren Blanco
- Tekniker, Basque Research and Technology Alliance (BRTA), 20600 Eibar, Spain;
| | - Leyre Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| |
Collapse
|
9
|
Karpova SG, Olkhov AA, Varyan IA, Shilkina NG, Berlin AA, Popov AA, Iordanskii AL. Biocomposites Based on Electrospun Fibers of Poly(3-hydroxybutyrate) and Nanoplatelets of Graphene Oxide: Thermal Characteristics and Segmental Dynamics at Hydrothermal and Ozonation Impact. Polymers (Basel) 2023; 15:4171. [PMID: 37896415 PMCID: PMC10610569 DOI: 10.3390/polym15204171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
In order to create new biodegradable nanocomposites for biomedicine, packaging, and environmentally effective adsorbents, ultra-thin composite fibers consisting of poly(3-hydroxybutyrate) (PHB) and graphene oxide (GO) were obtained by electrospinning. Comprehensive studies of ultrathin fibers combining thermal characteristics, dynamic electron paramagnetic resonance (ESR) probe measurements, and scanning electron microscopy (SEM) were carried out. It is shown that at the addition of 0.05, 0.1, 0.3, and 1% OG, the morphology and geometry of the fibers and their thermal and dynamic characteristics depend on the composite content. The features of the crystalline and amorphous structure of the PHB fibers were investigated by the ESR and DSC methods. For all compositions of PHB/GO, a nonlinear dependence of the correlation time of molecular mobility TEMPO probe (τ) and enthalpy of biopolyether melting (ΔH) is observed. The influence of external factors on the structural-dynamic properties of the composite fiber, such as hydrothermal exposure of samples in aqueous medium at 70 °C and ozonolysis, leads to extreme dependencies of τ and ΔH, which reflect two processes affecting the structure in opposite ways. The plasticizing effect of water leads to thermal destruction of the orientation of the pass-through chains in the amorphous regions of PHB and a subsequent decrease in the crystalline phase, and the aggregation of GO nanoplates into associates, reducing the number of GO-macromolecule contacts, thus increasing segmental mobility, as confirmed by decreasing τ values. The obtained PHB/GO fibrillar composites should find application in the future for the creation of new therapeutic and packaging systems with improved biocompatibility and high-barrier properties.
Collapse
Affiliation(s)
- Svetlana G. Karpova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
| | - Anatoly A. Olkhov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Ivetta A. Varyan
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Natalia G. Shilkina
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (N.G.S.); (A.A.B.)
| | - Alexander A. Berlin
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (N.G.S.); (A.A.B.)
| | - Anatoly A. Popov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Alexey L. Iordanskii
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (N.G.S.); (A.A.B.)
| |
Collapse
|
10
|
Hua Z, Tang L, Li L, Wu M, Fu J. Environmental biotechnology and the involving biological process using graphene-based biocompatible material. CHEMOSPHERE 2023; 339:139771. [PMID: 37567262 DOI: 10.1016/j.chemosphere.2023.139771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Biotechnology is a promising approach to environmental remediation but requires improvement in efficiency and convenience. The improvement of biotechnology has been illustrated with the help of biocompatible materials as biocarrier for environmental remediations. Recently, graphene-based materials (GBMs) have become promising materials in environmental biotechnology. To better illustrate the principle and mechanisms of GBM application in biotechnology, the comprehension of the biological response of microorganisms and enzymes when facing the GBMs is needed. The review illustrated distinct GBM-microbe/enzyme composites by providing the GBM-microbe/enzyme interaction and the determining factors. There are diverse GBM modifications for distinct biotechnology applications. Each of these methods and applications depends on the physicochemical properties of GBMs. The applications of these composites were mainly categorized as pollutant adsorption, anaerobic digestion, microbial fuel cells, and organics degradation. Where information was available, the strategies and mechanisms of GBMs in improving application efficacies were also demonstrated. In addition, the biological response, from microbial community changes, extracellular polymeric substances changes to biological pathway alteration, may become important in the application of these composites. Furthermore, we also discuss challenges facing the environmental application of GBMs, considering their fate and toxicity in the ecosystem, and offer potential solutions. This research significantly enhances our comprehension of the fundamental principles, underlying mechanisms, and biological pathways for the in-situ utilization of GBMs.
Collapse
Affiliation(s)
- Zilong Hua
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
11
|
Sharma C, Singh D, Srivastava R, Narain Sharma S. Symbiotic Antimicrobial Effects of Cellulose-Based Bio-Nanocomposite for Disease Management of Agricultural Crops. Chem Biodivers 2023; 20:e202300714. [PMID: 37650658 DOI: 10.1002/cbdv.202300714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
In the present work, a bionanocomposite for plant crop protection was prepared by non-toxic biocompatible & biodegradable nanomaterials (Cellulose & TiO2 ) to utilize its synergistic effects against antimicrobial pathogens. The commercially available microcrystalline cellulose has been reduced to a nanometric scale regime using acid hydrolysis, while the standard TiO2 nano-powder of particle size ~20 nm has been used to prepare their nanocomposite (NC). The antibacterial studies via agar well diffusion method demonstrated that after 72 h of incubation, parent nanomaterials Ncell and TiO2 were not showing any activity against phytopathogens X. campestris pv. campestris, and Clavibacter while the nanocomposite's NC's were still effective depicting both bacteriostatic and bactericidal actions. However, the bacterial growth of biocontrol P. fluorescence was not affected by Ncell, TiO2 NPs and NC after 72 h of incubation. The antifungal testing results via poison food agar assay method suggest that the nanocomposite, along with Ncell and TiO2 NPs, exhibited strong inhibition of fungal growth of Phytophthora Spp at 0.125 mg/ml concentration while for F. graminearum, similar effect was observed at 0.25 mg/ml concentration. The nanocomposite has proved its potential by exhibiting longer & stronger synergistic effects against plant pathogens as a good antimicrobial agent for protection of agricultural crops.
Collapse
Affiliation(s)
- Chhavi Sharma
- CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ritu Srivastava
- CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shailesh Narain Sharma
- CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
González K, Larraza I, Martin L, Eceiza A, Gabilondo N. Effective reinforcement of plasticized starch by the incorporation of graphene, graphene oxide and reduced graphene oxide. Int J Biol Macromol 2023; 249:126130. [PMID: 37541466 DOI: 10.1016/j.ijbiomac.2023.126130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Plasticized starch (PLS) nanocomposite films using glycerol and reinforced with graphene (G) and graphene oxide (GO) were prepared by solvent casting procedure. On one hand, the influence of adding different G contents into the PLS matrix was analyzed. In order to improve the stability of G nanoflakes in water, Salvia extracts were added as surfactants. The resulting nanocomposites presented improved mechanical properties. A maximum increase of 287 % in Young's modulus and 57 % in tensile strength was achieved for nanocomposites with 5 wt% of G. However, it seemed that Salvia acted as co-plasticizer for the PLS. Moreover, the addition of the highest G content led to an improvement of the electrical conductivity close to 5 × 10-6 S/m compared to the matrix. On the other hand, GO was also incorporated as nanofiller to prepare nanocomposites. Thus, the effect of increasing the GO content in the final behavior of the PLS nanocomposites was evaluated. The characterization of GO containing PLS nanocomposites showed that strong starch/GO interactions and a good dispersion of the nanofiller were achieved. Moreover, the acidic treatment applied for the reduction of the GO was found to be effective, since the electrical conductivity was 150 times bigger than its G containing counterpart.
Collapse
Affiliation(s)
- Kizkitza González
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; Department of Graphical Expression and Project Management, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Izaskun Larraza
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Loli Martin
- Macrobehaviour-Mesostructure-Nanotechnology SGIker Service, Faculty of Engineering of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastián 20018, Spain
| | - Arantxa Eceiza
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Nagore Gabilondo
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain.
| |
Collapse
|
13
|
Kolya H, Kang CW. Next-Generation Water Treatment: Exploring the Potential of Biopolymer-Based Nanocomposites in Adsorption and Membrane Filtration. Polymers (Basel) 2023; 15:3421. [PMID: 37631480 PMCID: PMC10458676 DOI: 10.3390/polym15163421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
This review article focuses on the potential of biopolymer-based nanocomposites incorporating nanoparticles, graphene oxide (GO), carbon nanotubes (CNTs), and nanoclays in adsorption and membrane filtration processes for water treatment. The aim is to explore the effectiveness of these innovative materials in addressing water scarcity and contamination issues. The review highlights the exceptional adsorption capacities and improved membrane performance offered by chitosan, GO, and CNTs, which make them effective in removing heavy metals, organic pollutants, and emerging contaminants from water. It also emphasizes the high surface area and ion exchange capacity of nanoclays, enabling the removal of heavy metals, organic contaminants, and dyes. Integrating magnetic (Fe2O4) adsorbents and membrane filtration technologies is highlighted to enhance adsorption and separation efficiency. The limitations and challenges associated are also discussed. The review concludes by emphasizing the importance of collaboration with industry stakeholders in advancing biopolymer-based nanocomposites for sustainable and comprehensive water treatment solutions.
Collapse
Affiliation(s)
- Haradhan Kolya
- Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Chun-Won Kang
- Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
14
|
Zare Y, Gharib N, Nam DH, Chang YW. Predicting of tunneling resistivity between adjacent nanosheets in graphene-polymer systems. Sci Rep 2023; 13:12455. [PMID: 37528228 PMCID: PMC10394054 DOI: 10.1038/s41598-023-39414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
In this work, the tunneling resistivity between neighboring nanosheets in grapheme-polymer nanocomposites is expressed by a simple equation as a function of the characteristics of graphene and tunnels. This expression is obtained by connecting two advanced models for the conductivity of graphene-filled materials reflecting tunneling role and interphase area. The predictions of the applied models are linked to the tested data of several samples. The impressions of all factors on the tunneling resistivity are evaluated and interpreted using the suggested equation. The calculations of tunneling resistivity for the studied examples by the model and suggested equation demonstrate the same levels, which confirm the presented methodology. The results indicate that the tunneling resistivity decreases by super-conductive graphene, small tunneling width, numerous contacts among nanosheets and short tunneling length.
Collapse
Affiliation(s)
- Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Nima Gharib
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Dong-Hyun Nam
- Department of Materials Science and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University ERICA, Ansan, 15588, Korea
| | - Young-Wook Chang
- Department of Materials Science and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University ERICA, Ansan, 15588, Korea.
| |
Collapse
|
15
|
Jafarzadeh S, Forough M, Kouzegaran VJ, Zargar M, Garavand F, Azizi-Lalabadi M, Abdollahi M, Jafari SM. Improving the functionality of biodegradable food packaging materials via porous nanomaterials. Compr Rev Food Sci Food Saf 2023; 22:2850-2886. [PMID: 37115945 DOI: 10.1111/1541-4337.13164] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Non-biodegradability and disposal problems are the major challenges associated with synthetic plastic packaging. This review article discusses a new generation of biodegradable active and smart packaging based on porous nanomaterials (PNMs), which maintains the quality and freshness of food products while meeting biodegradability requirements. PNMs have recently gained significant attention in the field of food packaging due to their large surface area, peculiar structures, functional flexibility, and thermal stability. We present for the first time the recently published literature on the incorporation of various PNMs into renewable materials to develop advanced, environmentally friendly, and high-quality packaging technology. Various emerging packaging technologies are discussed in this review, along with their advantages and disadvantages. Moreover, it provides general information about PNMs, their characterization, and fabrication methods. It also briefly describes the effects of different PNMs on the functionality of biopolymeric films. Furthermore, we examined how smart packaging loaded with PNMs can improve food shelf life and reduce food waste. The results indicate that PNMs play a critical role in improving the antimicrobial, thermal, physicochemical, and mechanical properties of natural packaging materials. These tailor-made materials can simultaneously extend the shelf life of food while reducing plastic usage and food waste.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Çankaya, Turkey
| | | | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Ireland
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
16
|
Kishore A, Mithul Aravind S, Singh A. Bionanocomposites for active and smart food packaging: A review on its application, safety, and health aspects. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
17
|
Boyapati PCS, Srinivas K, Akhil S, Bollikolla HB, Chandu B. A Comprehensive Review on Novel Graphene‐Hydroxyapatite Nanocomposites For Potential Bioimplant Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
| | - Kolla Srinivas
- Dept. of Mechanical Engineering RVR & JC College of Engineering Guntur, Andhra Pradesh 522019 India
| | - Syed Akhil
- Dept. of Nanotechnology Acharya Nagarjuna University Guntur, Andhra Pradesh 522510 India
| | - Hari Babu Bollikolla
- Dept. of Chemistry Acharya Nagarjuna University Guntur, Andhra Pradesh 522510 India
| | - Basavaiah Chandu
- Dept. of Nanotechnology Acharya Nagarjuna University Guntur, Andhra Pradesh 522510 India
| |
Collapse
|
18
|
Yao L, Chen A, Li Li, Liu Y. Preparation, properties, applications and outlook of graphene-based materials in biomedical field: A comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:1121-1156. [DOI: 10.1080/09205063.2022.2155781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luyang Yao
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
| | - Anqi Chen
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
| | - Li Li
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
- Liaoning Key Laboratory of New Drug Research & Development, Shenyang 110036, People’s Republic of China
| | - Yu Liu
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
- Liaoning University, Judicial Expertise Center, Shenyang 110036, People’s Republic of China
| |
Collapse
|
19
|
Dong J, Wang W, Zhou W, Zhang S, Li M, Li N, Pan G, Zhang X, Bai J, Zhu C. Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies. Biomater Res 2022; 26:72. [PMID: 36471454 PMCID: PMC9721013 DOI: 10.1186/s40824-022-00326-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/19/2022] [Indexed: 12/11/2022] Open
Abstract
Implant-associated infection (IAI) is increasingly emerging as a serious threat with the massive application of biomaterials. Bacteria attached to the surface of implants are often difficult to remove and exhibit high resistance to bactericides. In the quest for novel antimicrobial strategies, conventional antimicrobial materials often fail to exert their function because they tend to focus on direct bactericidal activity while neglecting the modulation of immune systems. The inflammatory response induced by host immune cells was thought to be a detrimental force impeding wound healing. However, the immune system has recently received increasing attention as a vital player in the host's defense against infection. Anti-infective strategies based on the modulation of host immune defenses are emerging as a field of interest. This review explains the importance of the immune system in combating infections and describes current advanced immune-enhanced anti-infection strategies. First, the characteristics of traditional/conventional implant biomaterials and the reasons for the difficulty of bacterial clearance in IAI were reviewed. Second, the importance of immune cells in the battle against bacteria is elucidated. Then, we discuss how to design biomaterials that activate the defense function of immune cells to enhance the antimicrobial potential. Based on the key premise of restoring proper host-protective immunity, varying advanced immune-enhanced antimicrobial strategies were discussed. Finally, current issues and perspectives in this field were offered. This review will provide scientific guidance to enhance the development of advanced anti-infective biomaterials.
Collapse
Affiliation(s)
- Jiale Dong
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wenzhi Wang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wei Zhou
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Siming Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Meng Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China ,grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Ning Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Guoqing Pan
- grid.440785.a0000 0001 0743 511XInstitute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xianzuo Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Jiaxiang Bai
- grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Chen Zhu
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| |
Collapse
|
20
|
Xu R, Mu X, Hu Z, Jia C, Yang Z, Yang Z, Fan Y, Wang X, Wu Y, Lu X, Chen J, Xiang G, Li H. Enhancing bioactivity and stability of polymer-based material-tissue interface through coupling multiscale interfacial interactions with atomic-thin TiO 2 nanosheets. NANO RESEARCH 2022; 16:5247-5255. [PMID: 36532602 PMCID: PMC9734535 DOI: 10.1007/s12274-022-5153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/25/2023]
Abstract
Stable and bioactive material-tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material-tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell-resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale. Electronic Supplementary Material Supplementary material (further details of fabrication and characterization of TiO2 NSs and TiO2-ARCs, the bioactivity evaluation of TiO2-ARCs on hDPSCs, and the measurement of interaction with demineralized dentin collagen) is available in the online version of this article at 10.1007/s12274-022-5153-1.
Collapse
Affiliation(s)
- Rongchen Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Xiaodan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zunhan Hu
- Department of Stomatology, Kunming Medical University, Kunming, 650500 China
| | - Chongzhi Jia
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zhenyu Yang
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Zhongliang Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yiping Fan
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xiaoyu Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
- Department of Stomatology, The Strategic Support Force Medical Center, Beijing, 100101 China
| | - Yuefeng Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xiaotong Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Jihua Chen
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Guolei Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Hongbo Li
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
21
|
Bio-nanocomposites as food packaging materials; the main production techniques and analytical parameters. Adv Colloid Interface Sci 2022; 310:102806. [DOI: 10.1016/j.cis.2022.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
22
|
Mohammadpour-Haratbar A, Zare Y, Rhee KY. Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects. Adv Colloid Interface Sci 2022; 309:102795. [DOI: 10.1016/j.cis.2022.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
|
23
|
Ouyang P, Liang C, Liu F, Chen Q, Yan Z, Ran J, Mou S, Yuan Y, Wu X, Yang ST. Stimulating effects of reduced graphene oxide on the growth and nitrogen fixation activity of nitrogen-fixing bacterium Azotobacter chroococcum. CHEMOSPHERE 2022; 294:133702. [PMID: 35066073 DOI: 10.1016/j.chemosphere.2022.133702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Graphene has found important applications in various areas and hundred tons of graphene materials are annually produced. It is crucial to investigate both the negative and positive environmental effects of graphene materials to ensure the safe applications and develop environmental applications. In this study, we reported the stimulating effects of reduced graphene oxide (RGO) to nitrogen-fixing bacterium Azotobacter chroococcum. RGO stimulated the cell growth of A. chroococcum at 0.010-0.500 mg/mL according to the growth curves and the colony-forming unit (CFU) increases. RGO wrapped over the A. chroococcum cells without inducing ultrastructural changes. RGO decreased the leakage of cell membrane, but slight oxidative stress was observed in A. chroococcum. RGO promoted the nitrogen fixation activity of A. chroococcum at 0.5 mg/mL according to both isotope dilution method and acetylene reduction activity measurements. Consequently, the increases of soil nitrogen contents were evidenced, in particular about 30% increase of organic nitrogen occurred at 0.5 mg/mL of RGO. In addition, RGO might possibly benefit the plant growth through enhancing the indoleacetic acid production of A. chroococcum. These results highlighted the positive environmental effects of graphene materials to nitrogen-fixing bacteria in nitrogen cycle.
Collapse
Affiliation(s)
- Peng Ouyang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Chengzhuang Liang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Fangshi Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Qian Chen
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Ziqiao Yan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Junyao Ran
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Shiyu Mou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Xian Wu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Facile Gold-Nanoparticle Boosted Graphene Sensor Fabrication Enhanced Biochemical Signal Detection. NANOMATERIALS 2022; 12:nano12081327. [PMID: 35458034 PMCID: PMC9033081 DOI: 10.3390/nano12081327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Graphene has been considered as an excellent biochemical sensors’ substrate material because of its excellent physical and chemical properties. Most of these sensors have employed enzymes, antibodies, antigens, and other biomolecules with corresponding recognition ability as recognition elements, to convert chemical signals into electrical signals. However, oxidoreductase enzymes that grow on graphene surfaces are affected significantly by the environment and are easily inactivated, which hinders the further improvement of detection sensitivity and robusticity. A gold-boosted graphene sensor was fabricated by the in situ electrochemical deposition of inorganic gold nanoparticles on vertical graphene nanosheets. This approach solves the instability of biological enzymes and improves the detection performance of graphene-based sensors. The uric acid sensitivity of the gold-boosted electrode was 6230 µA mM−1 cm−2, which is 6 times higher than the original graphene electrode. A 7 h GNSs/CC electrode showed an impressive detection performance for ascorbic acid, dopamine, and uric acid, simultaneously. Moreover, it exhibited a reliable detection performance in human serum in terms of uric acid. The possible reason could be that the vertical aliened graphene nanosheet acts as a reaction active spot. This 3D graphene-nanosheet-based doping approach can be applied to a wide variety of inorganic catalytic materials to enhance their performance and improve their durability in aspects such as single-atom catalysis and integration of multiple catalytic properties.
Collapse
|
25
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
26
|
Preparation and Modification Technology Analysis of Ionic Polymer-Metal Composites (IPMCs). Int J Mol Sci 2022; 23:ijms23073522. [PMID: 35408883 PMCID: PMC8998928 DOI: 10.3390/ijms23073522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
As a new type of flexible smart material, ionic polymer-metal composite (IPMC) has the advantages of being lightweight and having fast responses, good flexibility, and large deformation ranges. However, IPMC has the disadvantages of a small driving force and short lifespan. Based on this, this paper firstly analyzes the driving mechanism of IPMC. Then, it focuses on the current preparation technology of IPMC from the aspects of electroless plating and mechanical plating. The advantages and disadvantages of various preparation methods are analyzed. Due to the special driving mechanism of IPMC, there is a problem of short non-aqueous working time. Therefore, the modification research of IPMC is reviewed from the aspects of the basement membrane, working medium, and electrode materials. Finally, the current challenges and future development prospects of IPMC are discussed.
Collapse
|
27
|
de Armentia SL, Fernández-Villamarín S, Ballesteros Y, Del Real JC, Dunne N, Paz E. 3D Printing of a Graphene-Modified Photopolymer Using Stereolithography for Biomedical Applications: A Study of the Polymerization Reaction. Int J Bioprint 2022; 8:503. [PMID: 35187285 PMCID: PMC8852266 DOI: 10.18063/ijb.v8i1.503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
Additive manufacturing is gaining importance thanks to its multiple advantages. Stereolithography (SLA) shows the highest accuracy and the lowest anisotropy, which has facilitated the emergence of new applications as dentistry or tissue engineering. However, the availability of commercial photopolymers is still limited, and there is an increasing interest in developing resins with properties adapted for these new applications. The addition of graphene-based nanomaterials (GBN) may provide interesting advantages, such as improved mechanical properties and bioactivity. However, there is a lack of knowledge regarding the effect of GBNs on the polymerization reaction. A photopolymerizable acrylic resin has been used, and the effect of the addition of 0.1wt% of graphene (G); graphene oxide (GO) and graphite nanoplatelets (GoxNP) on printability and polymerization have been investigated. It was observed that the effect depended on GBN type, functionalization and structure (e.g., number of layers, size, and morphology) due to differences in the extent of dispersion and light absorbance. The obtained results showed that GO and GoxNP did not significantly affect the printability and quality of the final structure, whilst the application of G exhibited a negative effect in terms of printability due to a reduction in the polymerization degree. GO and GoxNP-loaded resins showed a great potential to be used for manufacturing structures by SLA.
Collapse
Affiliation(s)
- S Lopez de Armentia
- Department of Mechanical Engineering, Institute for Research in Technology, Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain
| | - S Fernández-Villamarín
- Department of Mechanical Engineering, Institute for Research in Technology, Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain
| | - Y Ballesteros
- Department of Mechanical Engineering, Institute for Research in Technology, Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain
| | - J C Del Real
- Department of Mechanical Engineering, Institute for Research in Technology, Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain
| | - N Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - E Paz
- Department of Mechanical Engineering, Institute for Research in Technology, Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain
| |
Collapse
|
28
|
Alizadeh Sani M, Maleki M, Eghbaljoo-Gharehgheshlaghi H, Khezerlou A, Mohammadian E, Liu Q, Jafari SM. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Adv Colloid Interface Sci 2022; 300:102593. [PMID: 34971916 DOI: 10.1016/j.cis.2021.102593] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Environmental issues such as plastic packaging and high demand for fresh and safe food has increased the interest for developing smart/active food packaging films with colloidal nanoparticles (NPs). Titanium dioxide nanoparticles (TNPs) are cost effective and stable metal oxide NPs which could be used as a functional nano-filler for biodegradable food packaging due to their excellent biocompatibility, photo catalyzing, and antimicrobial properties. This article has comprehensively reviewed the functional properties and advantages of TNPs-containing smart/active films. The advantage of adding TNPs for ameliorating food packaging materials such as their physical, mechanical, moisture/light barrier, optical, thermal resistance, microstructure and chemical properties as well as, antibacterial, and photocatalytic properties are discussed. Also, the practical and migration properties of administrating TNPs in food packaging material are investigated. The ethylene decomposition activity of TNPs containing active films, could be used for increasing the shelf life of fruits/vegetables after harvesting. TNPs are safe with negligible migration rates which could be used for fabrication of multifunctional smart/active packaging films due to their antimicrobial properties and ethylene gas scavenging activities.
Collapse
|
29
|
Yao S, Wang Y, Chi J, Yu Y, Zhao Y, Luo Y, Wang Y. Porous MOF Microneedle Array Patch with Photothermal Responsive Nitric Oxide Delivery for Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103449. [PMID: 34783460 PMCID: PMC8787387 DOI: 10.1002/advs.202103449] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/01/2021] [Indexed: 05/09/2023]
Abstract
Patches with the capacity of controllable delivering active molecules toward the wound bed to promote wound healing are expectant all along. Herein, a novel porous metal-organic framework (MOF) microneedle (MN) patch enabling photothermal-responsive nitric oxide (NO) delivery for promoting diabetic wound healing is presented. As the NO-loadable copper-benzene-1,3,5-tricarboxylate (HKUST-1) MOF is encapsulated with graphene oxide (GO), the resultant NO@HKUST-1@GO microparticles (NHGs) are imparted with the feature of near-infrared ray (NIR) photothermal response, which facilitate the controlled release of NO molecules. When these NHGs are embedded in a porous PEGDA-MN, the porous structure, larger specific surface area, and sufficient mechanical strength of the integrated MN could promote a more accurate and deeper delivery of NO molecules into the wound site. By applying the resultant NHG-MN to the wound of a type I diabetic rat model, the authors demonstrate that it is capable of accelerating vascularization, tissue regeneration, and collagen deposition, indicating its bright prospect applied in wound healing and other therapeutic scenarios.
Collapse
Affiliation(s)
- Shun Yao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Yuetong Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Junjie Chi
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Yunru Yu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| |
Collapse
|
30
|
Mallakpour S, Azadi E, Hussain CM. Recent advancements in synthesis and drug delivery utilization of polysaccharides-based nanocomposites: The important role of nanoparticles and layered double hydroxides. Int J Biol Macromol 2021; 193:183-204. [PMID: 34695491 DOI: 10.1016/j.ijbiomac.2021.10.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Drug delivery systems are explained as methods to deliver a specific drug to desired organs, tissues, and cells for drug release to diseases treatment. Recently, considerable development has been interested in stimuli-responsive nano-systems, which respond to the essential pathological and physicochemical issues in diseased sites. During the last decades, researchers in the world presented, investigated, and implemented novel different nanomaterials with a focus on developing drug delivery. Polysaccharides including chitosan, alginate, hyaluronic acid, gums, and cellulose, as natural bio-materials, are suitable candidates for designing and formulations of these nano-systems because of the outstanding merits such as bio-compatibility, bio-degradability, non-toxicity, and gelling characteristics. On the other side, nanoparticles including metals (Au, Ag), metal oxides (Fe3O4, ZnO, CuO), or non-metal oxides (SiO2) and also, layered double hydroxides nanostructures have appealed significant consideration in the fields of biomedical therapeutics and cancer therapy owing to the bio-compatibility, great surface area, good chemical and mechanical features, and also proper magnetic characteristics. This comprehensive review provides an overview of current advancements in drug delivery strategies, and manufacturing methods using chitosan, alginate, hyaluronic acid, gums, and also, metals, metal oxides, non-metal oxides, and LDHs for delivery system uses.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
31
|
Advanced konjac glucomannan-based films in food packaging: Classification, preparation, formation mechanism and function. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Karki S, Gohain MB, Yadav D, Ingole PG. Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review. Int J Biol Macromol 2021; 193:2121-2139. [PMID: 34780890 DOI: 10.1016/j.ijbiomac.2021.11.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/13/2023]
Abstract
Nanocomposite and bio-nanocomposite polymer materials/membranes have fascinated prominent attention in the energy as well as the medical sector. Their composites make them appropriate choices for various applications in the medical, energy and industrial sectors. Composite materials are subject of interest in the polymer industry. Different kinds of fillers, such as cellulose-based fillers, carbon black, clay nanomaterials, glass fibers, ceramic nanomaterial, carbon quantum dots, talc and many others have been incorporated into polymers to improve the quality of the final product. These results are dependent on a variety of factors; however, nanoparticle dispersion and distribution are major obstacles to fully using nanocomposites/bio-nanocomposites materials/membranes in various applications. This review examines the various nanocomposite and bio-nanocomposite materials applications in the energy and medical sector. The review also covers the variety of ways for increasing nanocomposite and bio-nanocomposite materials features, each with its own set of applications. Recent researches on composite materials have shown that polymeric nanocomposites and bio-nanocomposites are promising materials that have been intensively explored for many applications that include electronics, environmental remediation, energy, sensing (biosensor) and energy storage devices among other applications. In this review, we studied various nanocomposite and bio-nanocomposite materials, their controlling parameters to develop the product and examine their features and applications in the fields of energy and the medical sector.
Collapse
Affiliation(s)
- Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
33
|
Ikram R, Mohamed Jan B, Abdul Qadir M, Sidek A, Stylianakis MM, Kenanakis G. Recent Advances in Chitin and Chitosan/Graphene-Based Bio-Nanocomposites for Energetic Applications. Polymers (Basel) 2021; 13:3266. [PMID: 34641082 PMCID: PMC8512808 DOI: 10.3390/polym13193266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Herein, we report recent developments in order to explore chitin and chitosan derivatives for energy-related applications. This review summarizes an introduction to common polysaccharides such as cellulose, chitin or chitosan, and their connection with carbon nanomaterials (CNMs), such as bio-nanocomposites. Furthermore, we present their structural analysis followed by the fabrication of graphene-based nanocomposites. In addition, we demonstrate the role of these chitin- and chitosan-derived nanocomposites for energetic applications, including biosensors, batteries, fuel cells, supercapacitors and solar cell systems. Finally, current limitations and future application perspectives are entailed as well. This study establishes the impact of chitin- and chitosan-generated nanomaterials for potential, unexplored industrial applications.
Collapse
Affiliation(s)
- Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Akhmal Sidek
- Petroleum Engineering Department, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Minas M. Stylianakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-700 13 Heraklion, Greece;
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-700 13 Heraklion, Greece;
| |
Collapse
|
34
|
Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends. INT J POLYM SCI 2021. [DOI: 10.1155/2021/4907027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.
Collapse
|
35
|
Ali AM, Rashid KT, Yahya AA, Majdi HS, Salih IK, Yusoh K, Alsalhy QF, AbdulRazak AA, Figoli A. Fabrication of Gum Arabic-Graphene (GGA) Modified Polyphenylsulfone (PPSU) Mixed Matrix Membranes: A Systematic Evaluation Study for Ultrafiltration (UF) Applications. MEMBRANES 2021; 11:membranes11070542. [PMID: 34357192 PMCID: PMC8305004 DOI: 10.3390/membranes11070542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/07/2022]
Abstract
In the current work, a Gum, Arabic-modified Graphene (GGA), has been synthesized via a facile green method and employed for the first time as an additive for enhancement of the PPSU ultrafiltration membrane properties. A series of PPSU membranes containing very low (0–0.25) wt.% GGA were prepared, and their chemical structure and morphology were comprehensively investigated through atomic force microscopy (AFM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). Besides, thermogravimetric analysis (TGA) was harnessed to measure thermal characteristics, while surface hydrophilicity was determined by the contact angle. The PPSU-GGA membrane performance was assessed through volumetric flux, solute flux, and retention of sodium alginate solution as an organic polysaccharide model. Results demonstrated that GGA structure had been successfully synthesized as confirmed XRD patterns. Besides, all membranes prepared using low GGA content could impart enhanced hydrophilic nature and permeation characteristics compared to pristine PPSU membranes. Moreover, greater thermal stability, surface roughness, and a noticeable decline in the mean pore size of the membrane were obtained.
Collapse
Affiliation(s)
- Alaa Mashjel Ali
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (K.T.R.); (A.A.Y.); (A.A.A.)
| | - Khalid T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (K.T.R.); (A.A.Y.); (A.A.A.)
| | - Ali Amer Yahya
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (K.T.R.); (A.A.Y.); (A.A.A.)
| | - Hasan Sh. Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq; (H.S.M.); (I.K.S.)
| | - Issam K. Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq; (H.S.M.); (I.K.S.)
| | - Kamal Yusoh
- Department of Chemical Engineering, College of Engineering, University Malaysia Pahang, Pahang 26300, Malaysia;
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (K.T.R.); (A.A.Y.); (A.A.A.)
- Correspondence: or ; Tel.: +964-790-173-0181
| | - Adnan A. AbdulRazak
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (K.T.R.); (A.A.Y.); (A.A.A.)
| | - Alberto Figoli
- Institute on Membrane Technology, National Research Council (ITM-CNR), 87030 Rende (CS), Italy;
| |
Collapse
|
36
|
Krystyjan M, Khachatryan G, Grabacka M, Krzan M, Witczak M, Grzyb J, Woszczak L. Physicochemical, Bacteriostatic, and Biological Properties of Starch/Chitosan Polymer Composites Modified by Graphene Oxide, Designed as New Bionanomaterials. Polymers (Basel) 2021; 13:2327. [PMID: 34301083 PMCID: PMC8309611 DOI: 10.3390/polym13142327] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
The application of natural polymer matrices as medical device components or food packaging materials has gained a considerable popularity in recent years, this has occurred in response to the increasing plastic pollution hazard. Currently, constant progress is being made in designing two-component or three-component systems that combine natural materials which help to achieve a quality comparable to the purely synthetic counterparts. This study describes a green synthesis preparation of new bionanocomposites consisting of starch/chitosan/graphene oxide (GO), that possess improved biological activities; namely, good tolerability by human cells with concomitant antimicrobial activity. The structural and morphological properties of bionanocomposites were analyzed using the following techniques: dynamic light scattering, scanning and transmission electron microscopy, wettability and free surface energy determination, and Fourier transform infrared spectroscopy. The study confirmed the homogenous distribution of GO layers within the starch/chitosan matrix and their large particle size. The interactions among the components were stronger in thin films. Additionally, differential scanning calorimetry analysis, UV-vis spectroscopy, surface colour measurements, transparency, water content, solubility, and swelling degree of composites were also performed. The mechanical parameters, such as tensile strength and elongation at break (EAB) were measured in order to characterise the functional properties of obtained nanocomposites. The GO additive altered the thermal features of the composites and decreased their brightness. The EAB of composite was improved by the introduction of GO. Importantly, cell-based analyses revealed no toxic effect of the composites on HaCat keratinocytes and HepG2 hepatoma cells, although a pronounced bacteriostatic effect against various strains of pathogenic bacteria was observed. In conclusion, the starch/chitosan/GO nanocomposites reveal numerous useful physicochemical and biological features, which make them a promising alternative for purely synthetic materials.
Collapse
Affiliation(s)
- Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland; (G.K.); (M.G.); (M.W.); (L.W.)
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland; (G.K.); (M.G.); (M.W.); (L.W.)
| | - Maja Grabacka
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland; (G.K.); (M.G.); (M.W.); (L.W.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 31-120 Krakow, Poland;
| | - Mariusz Witczak
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland; (G.K.); (M.G.); (M.W.); (L.W.)
| | - Jacek Grzyb
- Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland;
| | - Liliana Woszczak
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland; (G.K.); (M.G.); (M.W.); (L.W.)
| |
Collapse
|