1
|
Maitlo HA, Younis SA, Lee CS, Kim KH. Progress in heterostructures for photoelectrocatalytic reduction of carbon dioxide into fuels and value-added products. Adv Colloid Interface Sci 2025; 341:103483. [PMID: 40139066 DOI: 10.1016/j.cis.2025.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/15/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Carbon capture and utilization (CCU) technology offers a sustainable option to simultaneously address both energy crisis and environmental pollution such as catalytic reduction of carbon dioxide (CO2) into value-added fuel products (e.g., C1-C3). Among diverse CCU strategies, the light-irradiated photoelectrocatalytic (PEC) approach is recognized as a cutting-edge option for efficient CO2 reduction reaction (RR) through the integration of photocatalysis and electrocatalysis within a one-stage hybridized catalytic system. Therefore, this review is meticulously structured to elucidate the potential utility of advanced composite catalysts (e.g., titanium dioxide, metal-organic frameworks, and organic/miscellaneous heterostructure materials) in PEC-CO2RR. It also examines the factors and processes governing their PEC-CO2RR activites in relation to their reduction pathways, electronic structures, charge-carrier dynamics, types of electrolytes, mass transfer, light-adsorption potential, and the viability of active sites. The fundamental principles and working mechanisms of diverse catalytic materials in PEC-CO2RR are also outlined to help establish the advanced catalytic systems based on performance assessments (e.g., in terms of CO2 conversion rate, quantum yield, and space-time yield). Overall, this review is expected to deliver the new path for the construction of the next-generation PEC-CO2RR systems that are upscalable, stable, and reusable with enhanced catalytic activity.
Collapse
Affiliation(s)
- Hubdar Ali Maitlo
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea; Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea; Analysis and Evaluation department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Caroline Sunyong Lee
- Department of Materials and Chemical Engineering, Hanyang University, Gyeonggi 15500, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Chen Y, Wang R, Wang D, Fang J, Dong R, Dai B. Harnessing Near-Infrared Light for Highly Efficient Photocatalysis. CHEMSUSCHEM 2025; 18:e202401786. [PMID: 39295495 DOI: 10.1002/cssc.202401786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/21/2024]
Abstract
Near-infrared (NIR) light, accounting for approximately 50 % of solar light, cannot directly excite photocatalytic reactions due to its lower energy, which severely restricts the photocatalytic solar energy conversion efficiency and hinders the application of photocatalysis. To overcome this dilemma, some viable strategies have been proposed to harness NIR light for enhancing photocatalytic performance based on material structure, composition, and function designs, and obvious progresses have been witnessed. In this review, the basic principles and representative advances in photocatalyst heterojunction designs (including p-n junctions, S-scheme, Z-scheme, and type-ІІ heterojunctions), photocatalyst composition and function designs (such as preparing rare earth element doped upconversion photocatalysts, rare earth upconversion photocatalytic hybrids and triplet-triplet annihilation upconversion photocatalytic composites), and photothermal-photocatalytic bifunction designs for NIR light utilization are exclusively scrutinized. Meanwhile, the applications of the above-mentioned NIR responsive photocatalyst composites in energy and environmental fields are summarized. Importantly, the challenges and outlooks in the field of NIR light harnessing for efficient photocatalysis are proposed, which may provide theoretical and experimental guidance to those working in solar energy conversion and utilization and other related fields.
Collapse
Affiliation(s)
- Yukai Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Ruizhe Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Rulin Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Baoying Dai
- State Key Laboratory of Organic Electronics and Information, Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Rana S, Kumar A, Wang T, Dhiman P, Sharma G. Recent progress and new insights on semiconductor heterojunctions powered photocatalytic desulphurization: A review. CHEMOSPHERE 2024; 364:143237. [PMID: 39218263 DOI: 10.1016/j.chemosphere.2024.143237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/09/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Desulphurization of fossil fuels is a critical process in reducing the sulphur content from environment, which is a major contributor to atmospheric pollution. Traditional desulphurization techniques, while effective, often involve high energy consumption and the use of harsh chemicals. Recently, photocatalytic desulphurization has emerged as a promising, eco-friendly alternative, leveraging the potential of photocatalysts especially semiconductor heterojunctions to enhance photocatalytic efficiency. This review comprehensively discusses the significance and mechanism of photocatalytic desulphurization reactions, designing of various heterojunctions such as conventional, p-n, Z-scheme and S-scheme, their charge transfer mechanism and properties and their contribution to the photocatalytic desulphurization activity. Heterojunctions, formed by combining different semiconductor materials, facilitate efficient charge separation and broaden the light absorption range, thereby improving the photocatalytic performance under visible light. Furthermore, the recent advancements in the heterojunction systems in the field of photocatalytic desulphurization activity have been discussed in detail and summarized. The current limitations and challenges in this particular field are also explored. The paper concludes with an outlook on future research directions and the potential industrial applications of heterojunction-powered photocatalytic desulphurization, emphasizing its role in achieving cleaner energy production and environmental sustainability.
Collapse
Affiliation(s)
- Sahil Rana
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India; Interdisciplinary and Innovate Research, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Tongtong Wang
- Interdisciplinary and Innovate Research, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India
| |
Collapse
|
4
|
Wang H, Xiong Y, Wang L, He Y, Chen M, Ding J, Ren N. Structural design of thiadiazole-based donor-acceptor COF/Fe-doped N vacancy g-C 3N x nanosheets for photocatalytic nitrogen fixation under visible light. J Colloid Interface Sci 2024; 662:357-366. [PMID: 38354562 DOI: 10.1016/j.jcis.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
The rational design of efficient photocatalysts to achieve artificial nitrogen fixation is an urgent challenge. Herein, we combined donor-acceptor covalent organic framework with iron-doped nitrogen vacancy graphitized carbon nitride (D-A COF/Fe-g-C3Nx) for photocatalytic nitrogen fixation. The photocatalyst exhibited good crystallinity, high porosity, and a large specific surface area. Without a sacrificial agent, the optimal 40 % D-A COF/Fe-g-C3Nx exhibited an excellent rate of ammonia production (646 μmol h-1 g-1) at 420 nm, and durable stability after successive cycling. Exhaustive experimental research and theory calculations verified that the D-A unit and Fe doping redistributed the distribution of the charge, which enhanced the visible light utilization and provided chemisorption sites for further polarization. Besides N-vacancies can serve as electron-trapping active sites to promote the directional migration of carriers. The reaction mechanism demonstrated that superoxide radical and hydrogen peroxide were formed by electron and hole, respectively, which promote the reduction of nitrogen to ammonia. This work provides a new idea for the rationalizing design of efficient catalysts for photocatalytic nitrogen fixation under mild conditions.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yuhan Xiong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liang Wang
- General Water of China Co., Ltd, Beijing 100022, China
| | - Yi He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meihui Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Mohd Raub AA, Bahru R, Mohamed MA, Latif R, Mohammad Haniff MAS, Simarani K, Yunas J. Photocatalytic activity enhancement of nanostructured metal-oxides photocatalyst: a review. NANOTECHNOLOGY 2024; 35:242004. [PMID: 38484390 DOI: 10.1088/1361-6528/ad33e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Nanostructured metal oxide semiconductors have emerged as promising nanoscale photocatalysts due to their excellent photosensitivity, chemical stability, non-toxicity, and biocompatibility. Enhancing the photocatalytic activity of metal oxide is critical in improving their efficiency in radical ion production upon optical exposure for various applications. Therefore, this review paper provides an in-depth analysis of the photocatalytic activity of nanostructured metal oxides, including the photocatalytic mechanism, factors affecting the photocatalytic efficiency, and approaches taken to boost the photocatalytic performance through structure or material modifications. This paper also highlights an overview of the recent applications and discusses the recent advancement of ZnO-based nanocomposite as a promising photocatalytic material for environmental remediation, energy conversion, and biomedical applications.
Collapse
Affiliation(s)
- Aini Ayunni Mohd Raub
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Raihana Bahru
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Rhonira Latif
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | | | - Khanom Simarani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Kuala Lumpur, Malaysia
| | - Jumril Yunas
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| |
Collapse
|
6
|
Li Q, Wang J, Huang H, Zhao G, Wang LL, Zhu X. Strain-induced excellent photocatalytic performance in Z-scheme BlueP/γ-SnS heterostructures for water splitting. Phys Chem Chem Phys 2024; 26:10289-10300. [PMID: 38497927 DOI: 10.1039/d3cp06004g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Constructing Z-scheme heterojunction photocatalysts with high solar-to-hydrogen (STH) efficiency is a practical alternative to produce clean and recyclable hydrogen energy on a large scale. This paper presents the design of stable Z-scheme blue phosphorene (BlueP)/γ-SnS heterostructures with excellent photocatalytic activities by applying strains. The first-principles calculations show that the BlueP/γ-SnS heterobilayer is a type-I heterojunction with an indirect bandgap of 1.41 eV and strong visible-light absorption up to 105 cm-1. Interestingly, biaxial strains (ε) can effectively regulate its bandgap width (semiconductor-metal) and induce the band alignment transition (type-I-type-II). Compressive and tensile strains can significantly enhance the interfacial interaction and visible-light absorption, respectively. More intriguingly, compressive strains can not only modulate the heterojunction types but also make the band edges meet the requirements for overall water splitting. In particular, the Z-scheme (type-I) BlueP/γ-SnS bilayer at -8% (-2%) strain exhibits a relatively high STH efficiency of 18% (17%), and the strained Z-scheme system (-8% ≤ ε ≤ -6%) also exhibits high and anisotropic carrier mobilities (158-2327 cm2 V-1 s-1). These strain-induced outstanding properties make BlueP/γ-SnS heterostructures promising candidates for constructing economically feasible photocatalysts and flexible nanodevices.
Collapse
Affiliation(s)
- Quan Li
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Jiabao Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Hao Huang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Guangting Zhao
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Ling-Ling Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiaojun Zhu
- School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
| |
Collapse
|
7
|
Dhakshinamoorthy A, Li Z, Yang S, Garcia H. Metal-organic framework heterojunctions for photocatalysis. Chem Soc Rev 2024; 53:3002-3035. [PMID: 38353930 DOI: 10.1039/d3cs00205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterojunctions combining two photocatalysts of staggered conduction and valence band energy levels can increase the photocatalytic efficiency compared to their individual components. This activity enhancement is due to the minimization of undesirable charge recombination by the occurrence of carrier migration through the heterojunction interface with separated electrons and holes on the reducing and oxidizing junction component, respectively. Metal-organic frameworks (MOFs) are currently among the most researched photocatalysts due to their tunable light absorption, facile charge separation, large surface area and porosity. The present review summarizes the current state-of-the-art in MOF-based heterojunctions, providing critical comments on the construction of these heterostructures. Besides including examples showing the better performance of MOF heterojunctions for three important photocatalytic processes, such as hydrogen evolution reaction, CO2 photoreduction and dye decolorization, the focus of this review is on describing synthetic procedures to form heterojunctions with MOFs and on discussing the experimental techniques that provide evidence for the operation of charge migration between the MOF and the other component. Special attention has been paid to the design of rational MOF heterojunctions with small particle size and controlled morphology for an appropriate interfacial contact. The final section summarizes the achievements of the field and provides our views on future developments.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Sihai Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Hermenegildo Garcia
- Departamento de Química/Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
8
|
Wary RR, Narzary M, Brahma BB, Brahma D, Kalita P, Buzar Baruah M. Nanostructural Design of ZnO Using an Agro-Waste Extract for a Sustainable Process and Its Photocatalytic Activity. ACS APPLIED BIO MATERIALS 2023; 6:4645-4661. [PMID: 37938913 DOI: 10.1021/acsabm.3c00412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The use of agro-waste extracts (AWEs) as a sustainable medium for developing cost-effective and ecologically friendly nanomaterials has piqued the interest of current researchers. Herein, waste extracts from papaya barks, banana peels, thumba plants, and snail shells were used for synthesizing ZnO nanostructures via a hydrothermal method, followed by calcination at 400 °C. The crystallinity and pure wurtzite phase formation of ZnO nanostructures were confirmed via X-ray diffraction. ZnO nanostructures with various morphologies such as tight sheet-like, spherical, porous sheet-like, and bracket-shaped, comprising small interconnected particles with a highly catalytically active exposed (0001) facet, were observed via field emission scanning electron microscopy and transmission electron microscopy. The formation mechanism of the various morphologies of the ZnO nanostructures was proposed. Ultraviolet-visible spectra showed different absorption band edges of ZnO nanostructures with a bandgap in the range of 3.17-3.27 eV. Photoluminescence studies showed the presence of various defect states such as oxygen and zinc vacancies and oxygen and zinc interstitials on ZnO nanostructures, which are usually observed in traditionally prepared ZnO. The photocatalytic activity of ZnO nanostructures was evaluated under direct sunlight using rhodamine B (RhB) and Congo red (CR) dyes as probe pollutants. Furthermore, prepared ZnO nanostructures could potentially adsorb anionic dyes (e.g., CR) in the absence of light. Superoxide and hydroxide radicals played a vital role in the photocatalytic activity of ZnO. The photocatalyst could be reused for up to three cycles, indicating its stability. Therefore, this study reports the diverse use of AWEs as cost-effective media for nanomaterial synthesis.
Collapse
Affiliation(s)
- Riu Riu Wary
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Mousumi Narzary
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Bidhu Bhusan Brahma
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Dulu Brahma
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Pranjal Kalita
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Manasi Buzar Baruah
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| |
Collapse
|
9
|
Saelee T, Chotsawat M, Rittiruam M, Suthirakun S, Praserthdam S, Ruankaew N, Khajondetchairit P, Junkaew A. First-principles-driven catalyst design protocol of 2D/2D heterostructures for electro- and photocatalytic nitrogen reduction reaction. Phys Chem Chem Phys 2023; 25:5327-5342. [PMID: 36727640 DOI: 10.1039/d2cp05124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ammonia synthesis from nitrogen is a vital process and a necessity in a variety of applications including energy, pharmaceutical, agricultural, and chemical applications. The electro- and photocatalytic nitrogen reduction reactions (NRRs) are promising sustainable processes operated under milder conditions than the conventional Haber-Bosch process. However, the main pain points of these catalytic processes are their low selectivity and low efficiency. This perspective presents the recent status and the design protocols for developing promising 2D/2D heterojunction catalysts for the NRR, using the first-principles approach. The current theoretical studies are briefly discussed, and available methods are suggested for the development and design of new potential 2D/2D heterojunctions as efficient electro- and photo-NRR catalysts.
Collapse
Affiliation(s)
- Tinnakorn Saelee
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Maneerat Chotsawat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| | - Meena Rittiruam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suwit Suthirakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nirun Ruankaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand.
| | - Patcharaporn Khajondetchairit
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anchalee Junkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand.
| |
Collapse
|
10
|
Yu H, Dai M, Zhang J, Chen W, Jin Q, Wang S, He Z. Interface Engineering in 2D/2D Heterogeneous Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205767. [PMID: 36478659 DOI: 10.1002/smll.202205767] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Assembling different 2D nanomaterials into heterostructures with strong interfacial interactions presents a promising approach for novel artificial photocatalytic materials. Chemically implementing the 2D nanomaterials' construction/stacking modes to regulate different interfaces can extend their functionalities and achieve good performance. Herein, based on different fundamental principles and photochemical processes, multiple construction modes (e.g., face-to-face, edge-to-face, interface-to-face, edge-to-edge) are overviewed systematically with emphasis on the relationships between their interfacial characteristics (e.g., point, linear, planar), synthetic strategies (e.g., in situ growth, ex situ assembly), and enhanced applications to achieve precise regulation. Meanwhile, recent efforts for enhancing photocatalytic performances of 2D/2D heterostructures are summarized from the critical factors of enhancing visible light absorption, accelerating charge transfer/separation, and introducing novel active sites. Notably, the crucial roles of surface defects, cocatalysts, and surface modification for photocatalytic performance optimization of 2D/2D heterostructures are also discussed based on the synergistic effect of optimization engineering and heterogeneous interfaces. Finally, perspectives and challenges are proposed to emphasize future opportunities for expanding 2D/2D heterostructures for photocatalysis.
Collapse
Affiliation(s)
- Huijun Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Meng Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenhan Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Qiu Jin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zuoli He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
11
|
Yin X, Sun X, Li D, Xie W, Mao Y, Liu Z, Liu Z. 2D/2D Phosphorus-Doped g-C 3N 4/Bi 2WO 6 Direct Z-Scheme Heterojunction Photocatalytic System for Tetracycline Hydrochloride (TC-HCl) Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214935. [PMID: 36429655 PMCID: PMC9691143 DOI: 10.3390/ijerph192214935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2023]
Abstract
Bi2WO6-based heterojunction photocatalyst for antibiotic degradation has been a research hotspot, but its photocatalytic performance needs to be further improved. Therefore, 2D/2D P-doped g-C3N4/Bi2WO6 direct Z-scheme heterojunction photocatalysts with different composition ratios were prepared through three strategies of phosphorus (P) element doping, morphology regulation, and heterojunction, and the efficiency of its degradation of tetracycline hydrochloride (TC-HCl) under visible light was studied. Their structural, optical, and electronic properties were evaluated, and their photocatalytic efficiency for TC-HCl degradation was explored with a detailed assessment of the active species, degradation pathways, and effects of humic acid, different anions and cations, and water sources. The 30% P-doped g-C3N4/Bi2WO6 had the best photocatalytic performance for TC-HCl degradation. Its photocatalytic rate was 4.5-, 2.2-, and 1.9-times greater than that of g-C3N4, P-doped g-C3N4, and Bi2WO6, respectively. The improved photocatalytic efficiency was attributed to the synergistic effect of P doping and 2D/2D direct Z-scheme heterojunction construction. The stability and reusability of the 30% P-doped C3N4/Bi2WO6 were confirmed by cyclic degradation experiments. Radical scavenging experiments and electron spin resonance spectroscopy showed that the main active species were •O2- and h+. This work provides a new strategy for the preparation of direct Z-scheme heterojunction catalysts with high catalytic performance.
Collapse
Affiliation(s)
- Xudong Yin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yufeng Mao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenghui Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhisen Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
12
|
Afzal S, Hussain H, Naz MY, Shukrullah S, Ahmad I, Irfan M, Mursal SNF, Legutko S, Kruszelnicka I, Ginter-Kramarczyk D. Catalytic Hydrogen Evolution from H 2S Cracking over Cr xZnS Catalyst in a Cylindrical Single-Layered Dielectric Barrier Discharge Plasma Reactor. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7426. [PMID: 36363018 PMCID: PMC9657977 DOI: 10.3390/ma15217426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The use of non-thermal plasma technology in producing green fuels is a much-appreciated environmentally friendly approach. In this study, an Al2O3-supported CrxZnS semiconductor catalyst was tested for hydrogen evolution from hydrogen sulfide (H2S) gas by using a single-layered dielectric barrier discharge (DBD) system. The Al2O3-supported CrxZnS catalyst (x = 0.20, 0.25, and 0.30) was produced by using a co-impregnation method and characterized for its structural and photocatalytic characteristics. The discharge column of the DBD system was filled with this catalyst and fed with hydrogen sulfide and argon gas. The DBD plasma was sustained with a fixed AC source of 10 kV where plasma produced species and UV radiations activated the catalyst to break H2S molecules under ambient conditions. The catalyst (hexagonal-cubic-sphalerite structure) showed an inverse relationship between the band gap and the dopant concentration. The hydrogen evolution decreased with an increase in dopant concentration in the nanocomposite. The Cr0.20ZnS catalyst showed excellent photocatalytic activity under the DBD exposure by delivering 100% conversion efficiency of H2S into hydrogen. The conversion decreased to 96% and 90% in case of Cr0.25ZnS and Cr0.30ZnS, respectively.
Collapse
Affiliation(s)
- Saba Afzal
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Humaira Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Irshad Ahmad
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Salim Nasar Faraj Mursal
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Stanislaw Legutko
- Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Izabela Kruszelnicka
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland
| | - Dobrochna Ginter-Kramarczyk
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
13
|
MXene-derived Anatase-TiO2/rutile-TiO2/In2O3 Heterojunctions toward Efficient Hydrogen Evolution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zhao NN, Zhang Y, Liu MQ, Peng Y, Liu JY. 2D–2D WO 3–Bi 2WO 6 photocatalyst with an S-scheme heterojunction for highly efficient Cr( vi) reduction. CrystEngComm 2022. [DOI: 10.1039/d2ce01024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
WO3–Bi2WO6 heterostructures display outstanding photo-reduction ability for high concentration of Cr(vi) due to the formation of 2D–2D junctions and the S-scheme transfer behavior of photogenerated e–h pairs.
Collapse
Affiliation(s)
- Nan-Nan Zhao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yi Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Meng-Qi Liu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yin Peng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jin-Yun Liu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|